【題目】下面使用類比推理正確的是( )
A. 直線a∥b,b∥c,則a∥c,類推出:向量,則
B. 同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b.類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b
C. 實數(shù)a,b,若方程x2+ax+b=0有實數(shù)根,則a2≥4b.類推出:復(fù)數(shù)a,b,若方程x2+ax+b=0有實數(shù)根,則a2≥4b
D. 以點(0,0)為圓心,r為半徑的圓的方程為x2+y2=r2.類推出:以點(0,0,0)為球心,r為半徑的球的方程為x2+y2+z2=r2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時,能實現(xiàn)要求嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四面體A—BCD中,棱長為4,M是BC的中點,
點P在線段AM上運動(P不與A、M重合),過
點P作直線l⊥平面ABC,l與平面BCD交于點Q,
給出下列命題:
①BC⊥平面AMD ②Q點一定在直線DM上
③
其中正確的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考3+3最大的特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān)決定從某學(xué)校高一年級的650名學(xué)生中隨機抽取男生、女生各25人進(jìn)行模擬選科經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10人
(1)請完成下面的2×2列聯(lián)表;
選擇全理 | 不選擇全理 | 合計 | |
男生 | 5 | ||
女生 | |||
合計 |
(2)估計有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由.
附:,其中n=a+b+c+d
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,
且,
(1)求數(shù)列的通項公式.
(2)設(shè)數(shù)列滿足,
①求數(shù)列的通項公式;
②是否存在正整數(shù),使得,,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,側(cè)面為正三角形,側(cè)面底面,、分別為棱、的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在棱上是否存在一點,使得平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com