【題目】已知函數(shù)f(x)=|x﹣2|+|x﹣a|.
(1)當(dāng)a=2時(shí),求不等式f(x)≥4的解集;
(2)不等式f(x)<4的解集中的整數(shù)有且僅有1,2,3,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:由題知:|x﹣2|+|x﹣2|≥4,
∴|x﹣2|≥2,∴x﹣2≥2或x﹣2≤﹣2,
故不等式的解集為{x|x≤0或x≥4}
(2)解:由題意知 ,代入得 ,
解得a≤﹣2或a=2或a≥6,又|x﹣2|+|x﹣a|≥|2﹣a|.
①當(dāng)a≤﹣2時(shí),|2﹣a|≥4,所以f(x)≥4恒成立,
f(x)<4解集為空集,不合題意;
②當(dāng)a=2時(shí),由(1)可知解集為(0,4),符合題意;
③當(dāng)a≥2時(shí),|2﹣a|≥4,所以f(x)≥4恒成立,
f(x)<4解集為空集,不合題意;
綜上所述,當(dāng)a=2時(shí),不等式f(x)<4的解集中的整數(shù)有且僅有1,2,3
【解析】(1)通過(guò)討論x的范圍求出不等式的解集即可;(2)通過(guò)討論a的范圍,求出滿足條件的a的值即可.
【考點(diǎn)精析】本題主要考查了絕對(duì)值不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若集合A={x|kx2﹣2x﹣1=0}只有一個(gè)元素,則實(shí)數(shù)k的取值集合為( )
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)[x]表示不超過(guò)x的最大整數(shù),如[1]=1,[0.5]=0,已知函數(shù)f(x)= ﹣k(x>0),若方程f(x)=0有且僅有3個(gè)實(shí)根,則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,平面ABC⊥平面BCDE,BC∥DE, ,BE=CD=2,AB⊥BC,M,N分別為DE,AD中點(diǎn).
(1)證明:平面MNC⊥平面BCDE;
(2)若EC⊥CD,點(diǎn)P為棱AD的三等分點(diǎn)(近A),平面PMC與平面ABC所成銳二面角的余弦值為 ,求棱AB的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ex(ax﹣1),g(x)=a(x﹣1),a∈R.
(1)討論f(x)的單調(diào)性;
(2)若有且僅有兩個(gè)整數(shù)xi(i=1,2),使得f(xi)<g(xi)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga ,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實(shí)數(shù)m使得f(x+2)+f(m﹣x)為常數(shù)?若存在,求出m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)g(x)=mx2﹣2mx+n+1(m>0)在區(qū)間[0,3]上有最大值4,最小值0.
(1)求函數(shù)g(x)的解析式;
(2)設(shè)f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]時(shí)恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記函數(shù) 的定義域?yàn)锳,g(x)=lg[(x﹣a﹣1)(2a﹣x)](a<1)的定義域?yàn)锽,求
(1)A,B;
(2)若BA,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對(duì)于任意 都有f(kx2)+f(2x﹣1)>0成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com