【題目】設[x]表示不超過x的最大整數,如[1]=1,[0.5]=0,已知函數f(x)= ﹣k(x>0),若方程f(x)=0有且僅有3個實根,則實數k的取值范圍是( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】如表提供了甲產品的產量x(噸)與利潤y(萬元)的幾組對照數據.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程 = x+ ;
(2)計算相關指數R2的值,并判斷線性模型擬合的效果.
參考公式: = = ,R2=1﹣ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|(x+3)(x﹣6)≥0},B={x| <0}.
(1)求A∩RB;
(2)已知E={x|2a<x<a+1}(a∈R),若EB,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩地相距200千米,汽車從甲地勻速行駛到乙地,速度不得超過50千米/時.已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數為0.02;固定部分為50(元/時).
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數,并指出定義域;
(2)用單調性定義證明(1)中函數的單調性,并指出汽車應以多大速度行駛可使全程運輸成本最小?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣2|+|x﹣a|.
(1)當a=2時,求不等式f(x)≥4的解集;
(2)不等式f(x)<4的解集中的整數有且僅有1,2,3,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線的焦點在拋物線上,點是拋物線上的動點.
(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過點作拋物線的兩條切線, 、分別為兩個切點,求面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com