2.設(shè)集合M={-1,1},N={x|x(x-$\frac{1}{2}$)>0},則下列結(jié)論正確的是( 。
A.N⊆MB.N∩M=∅C.M⊆ND.M∪N=R

分析 求得集合N,即可得出集合M與集合N的關(guān)系,即可得出結(jié)論.

解答 解:∵N={x|x(x-$\frac{1}{2}$)>0},
∴N={x|x(x-$\frac{1}{2}$)>0}={x|x<0或x$>\frac{1}{2}$},
∵集合M={-1,1},
∴可知{-1}∈N,{1}∈N,
∴M⊆N,
故選:C.

點(diǎn)評(píng) 本題考查學(xué)生的計(jì)算能力,考查集合的包含關(guān)系的判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.從甲、乙、丙、丁四人任選兩人參加問(wèn)卷調(diào)查,則甲被選中的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在某中學(xué)的“校園微電影節(jié)”活動(dòng)中,學(xué)校將從微電影的“點(diǎn)播量”和“專家評(píng)分”兩個(gè)角度來(lái)進(jìn)行評(píng)優(yōu),若A電影的“點(diǎn)播量”和“專家評(píng)分”中至少有一項(xiàng)高于B電影,則稱A電影不亞于B電影,已知共有5部微電影參展,如果某部電影不亞于其他4部,就稱此部電影為優(yōu)秀影片,那么在這5部微電影中,最多可能有5部?jī)?yōu)秀影片.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x2-2x+t,g(x)=x2-t(t∈R)
(1)當(dāng)x∈[2,3]時(shí),求函數(shù)f(x)的值域(用t表示)
(2)設(shè)集合A={y|y=f(x),x∈[2,3]},B={y|y=|g(x)|,x∈[2,3]},是否存在正整數(shù)t,使得A∩B=A.若存在,請(qǐng)求出所有可能的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在回歸分析中,下列說(shuō)法錯(cuò)誤的是( 。
A.用線性回歸模型近似真實(shí)模型可產(chǎn)生誤差
B.R2越大,模型的擬合效果越好
C.殘差平方和越小,模型的擬合效果越好
D.R2越大,殘差平方和也越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖所示的算法流程圖中,輸出S的值為(  ) 
A.32B.42C.52D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知$\frac{cosα+sinα}{cosα-sinα}$=3,則tan(α+$\frac{π}{4}$)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.給出下列命題:
(1)函數(shù)y=tanx在定義域內(nèi)單調(diào)遞增;
(2)若α,β是銳角△ABC的內(nèi)角,則sinα>cosβ;
(3)函數(shù)y=cos($\frac{1}{2}$x+$\frac{3π}{2}$)的對(duì)稱軸x=$\frac{π}{2}$+kπ,k∈Z;
(4)函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位,得到y(tǒng)=sin(2x+$\frac{π}{4}$)的圖象.
其中正確的命題的序號(hào)是(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知復(fù)數(shù)z=$\frac{3-i}{1-i}$,則|z|=( 。
A.$\sqrt{5}$B.5C.$\sqrt{3}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案