已知橢圓C的中心在原點,焦點在y軸上,焦距為4,且過點,(
5
3
,2)求橢圓C的方程.
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先設(shè)焦點在y軸上橢圓的方程,根據(jù)已知條件建立方程組,最后通過解方程組,確定橢圓方程.
解答: 解:已知橢圓C的中心在原點,焦點在y軸上,
則:設(shè)橢圓的方程為:
y2
a2
+
x2
b2
=1
(a>b>0)
由于焦距為4
則:a2-b2=4①
點(
5
3
,2)在橢圓上
4
a2
+
25
9
b2
=1

所以:由①②得:b2=5  a2=9
故橢圓c的方程為:
y2
9
+
x2
5
=1
點評:本題考查的知識要點:橢圓標準方程的求法,主要建立a、b、c的關(guān)系式,屬于基礎(chǔ)題型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在一個特定時段內(nèi),以點E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東45°且與點A相距40
2
海里的位置B,經(jīng)過40分鐘又測得該船已行駛到點A北偏東45°+θ(其中cosθ=
5
26
26
,0°<θ<90°)且與點A相距10
13
海里的位置C.
(1)求該船的行駛速度(單位:海里/小時);
(2)若該船不改變航行方向繼續(xù)行駛,判斷它是否會進入危險水域,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

試寫出所有終邊在直線y=-
3
x上的角的集合,并指出上述集合中介于-180°和180°之間的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的焦點在x軸上,離心率為
2
3
,且過點P(1,
2
3
),求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C過點P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對稱.若Q為圓C上的一個動點,則
PQ
MQ
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的定義域:
(1)y=(3x-2) 
1
2
+(2-3x) -
1
3

(2)y=(-
x+1
2
 -
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的周期:
(1)y=sin
3
4
x,x∈R

(2)y=cos4x,x∈R
(3)y=
1
2
cosx,x∈R

(4)y=sin(
1
3
x+
π
4
),x∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,角A、B、C對應的邊分別為a、b、c,若asin(
π
2
-C),bsin(
π
2
-B),csin(
π
2
-A)依次成等差數(shù)列.
(1)求角B;
(2)如果△ABC的外接圓的面積為π,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)f(x)=
3x+a
x2+1
是R上的奇函數(shù),則a的值為
 

查看答案和解析>>

同步練習冊答案