【題目】已知等差數(shù)列的前項和為,公差,且, 成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

【答案】(1)(2)

【解析】試題分析:(1)由數(shù)列為等比數(shù)列,可以化基本量,再求得a1=3,d=2,最終出通項.

(2)由第一問知的通項,根據(jù)錯位相減的方法得到Tn=n3n

(1). ∵S1+S3=18,a1,a4,a13成等比數(shù)列.

4a1+3d=18,

解得a1=3d=2

∴an=3+2n﹣1=2n+1

(2)bn=2n+13n1

數(shù)列{bn}前n項和Tn=3+5×3+7×32+…+2n+13n1

3Tn=32+5×32+…+2n﹣13n1+2n+13n,

∴﹣2Tn=3+2×3+32+…+3n12n+13n= +12n+13n

∴Tn=n3n

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1的棱AA1=2,求:

(1)求異面直線A1D與AC所成角的大小;
(2)求四面體A1﹣DCA的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為倡導全體學生為特困學生捐款,舉行“一元錢,一片心,誠信用水”活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出和收益情況,如表:

售出水量x(單位:箱)

7

6

6

5

6

收益y(單位:元)

165

142

148

125

150


(1)求y關于x的線性回歸方程;
(2)預測售出8箱水的收益是多少元?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為: = , =
參考數(shù)據(jù):7×165+6×142+6×148+5×125+6×150=4420.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的空間幾何體中,底面四邊形為正方形, , ,平面平面, , .

(1)求二面角的大;

(2)若在平面上存在點,使得平面,試通過計算說明點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知 tanAtanB﹣tanA﹣tanB=
(1)求∠C的大小;
(2)設角A,B,C的對邊依次為a,b,c,若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,甲船在A處,乙船在A處的南偏東45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,應沿什么方向,用多少h能盡快追上乙船?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【廣東省惠州市2017屆高三上學期第二次調研】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點

)求點的軌跡方程;

)若直線與點的軌跡有兩個不同的交點,且原點總在以為直徑的圓的內部,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇.

方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率均為,第一次抽獎,若未中獎,則抽獎結束,若中獎,則通過拋一枚質地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎。規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則所獲得獎金為0元.

方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲得獎金400元.

(1)求某員工選擇方案甲進行抽獎所獎金(元)的分布列;

(2)試比較某員工選擇方案乙與選擇方案甲進行抽獎,哪個方案更劃算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設已知雙曲線的焦點為,過的直線與曲線相交于兩點.

(1)若直線的傾斜角為,且,求;

(2)若,橢圓上兩個點滿足: 三點共線且,求四邊形的面積的最小值.

查看答案和解析>>

同步練習冊答案