【題目】x,y,z為非零實數(shù),滿足xy+yz+zx=1,證明:.

【答案】不等式的證明一般可以考慮運用作差法或者是利用分析法來證明。

【解析】

試題為使所證式有意義,三數(shù)中至多有一個為0;據(jù)對稱性,不妨設,則

、當時,條件式成為,,而

只要證,,即,也即,此為顯然;取等號當且僅當

、再證,對所有滿足的非負實數(shù),皆有

.顯然,三數(shù)中至多有一個為0,據(jù)對稱性,

仍設,則,令,為銳角,以為內(nèi)角,構(gòu)作,則 ,于是,且由知,;于是,即是一個非鈍角三角形.

下面采用調(diào)整法,對于任一個以為最大角的非鈍角三角形,固定最大角,將調(diào)整為以為頂角的等腰,其中,且設,記,據(jù)知,

.今證明,.即

……①

即要證……②

先證……③,即證,

,此即,也即

,即,此為顯然.

由于在中,,則;而在中,

,因此式成為

……④,

只要證,……⑤,即證,注意式以及

,只要證,即,也即…⑥

由于最大角滿足:,而,則,所以

,故成立,因此得證,由成立,從而成立,即,因此本題得證.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖象先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).

1)求的解析式,并求的對稱中心;

2)若關(guān)于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個不同的零點

1)求實數(shù)a的取值范圍;

2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且,其中為奇函數(shù),為偶函數(shù)。若關(guān)于x的方程上有解,則實數(shù)a的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足:(1);(2);(3)時,.大小關(guān)系

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題16分)某鄉(xiāng)鎮(zhèn)為了進行美麗鄉(xiāng)村建設,規(guī)劃在長為10千米的河流OC的一側(cè)建一條觀光帶,觀光帶的前一部分為曲線段OAB,設曲線段OAB為函數(shù)(單位:千米)的圖象,且曲線段的頂點為;觀光帶的后一部分為線段BC,如圖所示.

(1)求曲線段OABC對應的函數(shù)的解析式;

(2)若計劃在河流OC和觀光帶OABC之間新建一個如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQ,QP, PN構(gòu)成,其中點P在線段BC上.當OM長為多少時,綠化帶的總長度最長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若二次函數(shù)f(x)=4x2-2(t-2)x-2t2-t+1在區(qū)間[-1,1]內(nèi)至少存在一個值m,使得f(m)>0,則實數(shù)t的取值范圍( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了人進行分析,得到如下列聯(lián)表(單位:人).

經(jīng)常使用

偶爾使用或不使用

合計

歲及以下

歲以上

合計

1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為市使用共享單車的情況與年齡有關(guān);

2)(i)現(xiàn)從所選取的歲以上的網(wǎng)友中,采用分層抽樣的方法選取人,再從這人中隨機選出人贈送優(yōu)惠券,求選出的人中至少有人經(jīng)常使用共享單車的概率;

ii)將頻率視為概率,從市所有參與調(diào)查的網(wǎng)友中隨機選取人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,橢圓與雙曲線的焦點相同.

(1)求橢圓與雙曲線的方程;

(2)過雙曲線的右頂點作兩條斜率分別為的直線,,分別交雙曲線于點,不同于右頂點),若,求證:直線的傾斜角為定值,并求出此定值;

(3)設點,若對于直線,橢圓上總存在不同的兩點關(guān)于直線對稱,且,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案