【題目】設(shè),橢圓:與雙曲線:的焦點相同.
(1)求橢圓與雙曲線的方程;
(2)過雙曲線的右頂點作兩條斜率分別為,的直線,,分別交雙曲線于點,(,不同于右頂點),若,求證:直線的傾斜角為定值,并求出此定值;
(3)設(shè)點,若對于直線,橢圓上總存在不同的兩點與關(guān)于直線對稱,且,求實數(shù)的取值范圍.
【答案】(1)橢圓的方程為,雙曲線的方程為;(2)詳見解析.(3)見解析。
【解析】
(1)利用橢圓和雙曲線的性質(zhì),結(jié)合焦點相同,建立方程,計算m值,即可。(2)設(shè)出直線方程,代入雙曲線方程,建立等式,計算P的坐標(biāo),同理得到Q的坐標(biāo),結(jié)合,可以得到,發(fā)現(xiàn)直線PQ與x軸平行,故證之。(3)結(jié)合題意,設(shè)出直線AB的方程,代入橢圓解析式中,建立方程,計算出AB的中點M坐標(biāo),而M又在直線l上,代入,結(jié)合題目所提供的不等式,建立不等關(guān)系,即可得到b的范圍。
解:(1)由題意,,所以.
所以橢圓的方程為,雙曲線的方程為.
(2)雙曲線的右頂點為,因為,不妨設(shè),則,
設(shè)直線的方程為,
由,得,
則,(),.
同理,,,
又,所以,.
因為,所以直線與軸平行,即為定值,傾斜角為0. ,
(3)設(shè),,直線的方程為,
由整理得,
△,故.
,,
設(shè)的中點為,則,,
又在直線 上,所以,.
因為,,
所以
,所以.又,。
即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面底面ABCD,已知, 為正三角形.
(1)證明.
(2)若,,求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上不單調(diào),求實數(shù)的取值范圍;
(3)求證:或是函數(shù)在上有三個不同零點的必要不充分條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實施方案,決定從2018年秋季入學(xué)的高中一年級學(xué)生開始實施“”高考模式.所謂“”,即“3”是指考生必選語文、數(shù)學(xué)、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學(xué)、思想政治、地理四科中任選兩科.
(1)若某考生按照“”模式隨機選科,求選出的六科中含有“語文,數(shù)學(xué),外語,物理,化學(xué)”的概率.
(2)新冠疫情期間,為積極應(yīng)對“”新高考改革,某地高一年級積極開展線上教學(xué)活動.教育部門為了解線上教學(xué)效果,從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語數(shù)外的網(wǎng)絡(luò)測試,并給前400名頒發(fā)榮譽證書,假設(shè)該次網(wǎng)絡(luò)測試成績服從正態(tài)分布,且滿分為450分.
①考生甲得知他的成績?yōu)?/span>270分,考試后不久了解到如下情況:“此次測試平均成績?yōu)?/span>171分,351分以上共有57人”,請用你所學(xué)的統(tǒng)計知識估計甲能否獲得榮譽證書,并說明理由;
②考生丙得知他的實際成績?yōu)?/span>430分,而考生乙告訴考生丙:“這次測試平均成績?yōu)?/span>201分,351分以上共有57人”,請結(jié)合統(tǒng)計學(xué)知識幫助丙同學(xué)辨別乙同學(xué)信息的真?zhèn),并說明理由.
附:;
;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,對稱軸為直線的拋物線與軸交于兩點,其中點的坐標(biāo)為,與軸交于點,作直線.
(1)求拋物線的解析式;
(2)如圖,點是直線下方拋物線上的一個動點,連結(jié).當(dāng)面積最大時,求點的坐標(biāo);
(3)如圖,在(2)的條件下,過點作于點交軸于點將繞點旋轉(zhuǎn)得到在旋轉(zhuǎn)過程中,當(dāng)點或點落在軸上(不與點重合)時,將沿射線平移得到,在平移過程中,平面內(nèi)是否存在點使得四邊形是菱形?若存在,請直接寫出所有符合條件的點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為的正方形,為等腰三角形,,平面平面,動點在棱上,無論點運動到何處時,總有.
(1)試判斷平面與平面是否垂直,并證明你的結(jié)論;
(2)若點為中點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天津市某高中團委在2019年12月4日開展了以“學(xué)法、遵法、守法”為主題的學(xué)習(xí)活動.為檢查該學(xué)校組織學(xué)生學(xué)習(xí)的效果,現(xiàn)從該校高一、高二、高三的學(xué)生中分別選取了4人,3人,3人作為代表進(jìn)行問卷測試.具體要求:每位學(xué)生要從10個有關(guān)法律、法規(guī)的問題中隨機抽出4個問題進(jìn)行作答.
(1)若從這10名學(xué)生中任選3人,求這3名學(xué)生分別來自三個年級的概率;
(2)若這10人中的某學(xué)生能答對10道題中的7道題,另外3道題回答不對,記表示該名學(xué)生答對問題的個數(shù),求隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦距為的橢圓(),如果滿足“”,則稱此橢圓為“等差橢圓”.
(1)如果橢圓()是“等差橢圓”,求的值;
(2)如果橢圓 ()是“等差橢圓”,過作直線與此“等差橢圓”只有一個公共點,求此直線的斜率;
(3)橢圓()是“等差橢圓”,如果焦距為12,求此“等差橢圓”的方程;
(4)對于焦距為12的“等差橢圓”,點為橢圓短軸的上頂點,為橢圓上異于點的任一點,為關(guān)于原點的對稱點(也異于),直線分別與軸交于兩點,判斷以線段為直徑的圓是否過定點?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com