1.函數(shù)y=log${\;}_{\frac{1}{2}}$cos($\frac{3π}{2}$-2x)的遞增區(qū)間是 ( 。
A.[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ](k∈Z)B.[-$\frac{π}{4}$+kπ,kπ)(k∈Z)C.[$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈Z)D.[$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ)(k∈Z)

分析 先求出函數(shù)的定義域,利用換元法結(jié)合復(fù)合函數(shù)單調(diào)性之間的關(guān)系進行求解.

解答 解:y=log${\;}_{\frac{1}{2}}$cos($\frac{3π}{2}$-2x)=log${\;}_{\frac{1}{2}}$(-sin2x),
由-sin2x>0得sin2x<0,即2kπ-π<2x<2kπ,k∈Z,
即kπ-$\frac{π}{2}$<x<kπ,k∈Z,
設(shè)t=-sin2x,則y=log${\;}_{\frac{1}{2}}$t為減函數(shù),
要求y=log${\;}_{\frac{1}{2}}$cos($\frac{3π}{2}$-2x)的遞增區(qū)間是,即求t=-sin2x的減區(qū)間,
即求y=sin2x的增區(qū)間,
由2kπ-$\frac{π}{2}$≤2x<2kπ,k∈Z,得kπ-$\frac{π}{4}$≤x<kπ,k∈Z,
即y=sin2x的增區(qū)間是[-$\frac{π}{4}$+kπ,kπ)(k∈Z),
故選:B

點評 本題主要考查函數(shù)單調(diào)性和單調(diào)區(qū)間的求解,根據(jù)復(fù)合函數(shù)單調(diào)性的性質(zhì),利用換元法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}為等差數(shù)列,若a${\;}_{1}^{2}$+a${\;}_{2}^{2}$=1,則a${\;}_{2}^{2}$+a${\;}_{3}^{2}$的取值范圍是[3-$2\sqrt{2}$,3+$2\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)復(fù)數(shù)z1=-1+3i,z2=1+i,則$\frac{{{z}_{1}+z}_{2}}{{z}_{1}-{z}_{2}}$=( 。
A.-1-iB.1+iC.1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知π<α<$\frac{3}{2}$π,sinα=-$\frac{4}{5}$,求tan(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=sin(2x-$\frac{π}{4}$)(0≤x<π)的單調(diào)增區(qū)間為[0,$\frac{3π}{8}$],[$\frac{7π}{8}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線l1:3x-y+1=0,直線l2過點(1,0),且它的傾斜角是l1的傾斜角的2倍,則直線l2的方程為( 。
A.y=6x+1B.y=6(x-1)C.y=$\frac{3}{4}$(x-1)D.y=-$\frac{3}{4}$(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知M(x,y)是以A(-2,3),B(3,2)為端點的線段上一動點,則$\frac{y-1}{x+1}$的取值范圍為( 。
A.[-2,$\frac{1}{4}$]B.(-∞,-2]C.(-∞,2]∪[$\frac{1}{4}$,+∞)D.[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若集合A={x|3x+1>0},B={|x-1|<2},則A∩B=(-$\frac{1}{3}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow a=(1,\sqrt{3})$,$\vec b=(-\sqrt{3},3)$,則$|{\overrightarrow a}|$=2;$\overrightarrow a•\overrightarrow b$=$2\sqrt{3}$;$\overrightarrow a$在$\overrightarrow b$方向上的投影為1.

查看答案和解析>>

同步練習(xí)冊答案