精英家教網 > 高中數學 > 題目詳情

【題目】趙爽是我國古代數學家、天文學家大約在公元222年趙爽為《周碑算經》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構造如圖所示的圖形,它是由個3全等的等邊三角形與中間的一個小等邊三角形組成的一個大等邊三角形,設DF2AF,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率是( )

A. B. C. D.

【答案】B

【解析】

由題意可得,設,求得,由面積比的幾何概型,可知在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率,即可求解.

由題意可得,設,可得,

中,由余弦定理得,

所以

,

由面積比的幾何概型,可知在大等邊三角形中隨機取一點,

則此點取自小等邊三角形的概率是,故選B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知互不重合的直線,,互不重合的平面,給出下列四個命題,錯誤的命題是(

A.,,則

B.,,,則

C.,,,則

D.,,則

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,平面BPC⊥平面DPC,,E,F分別是PC,AD的中點

求證:(1)BE⊥CD;

2)EF∥平面PAB

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.

1)求證:平面;

2)在線段上是否存在點,使得平面與平面所成銳二面角的平面角為,且滿足?若不存在,請說明理由;若存在,求出的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓軸負半軸相交于點,與軸正半軸相交于點.

1)若過點的直線被圓截得的弦長為,求直線的方程;

2)若在以為圓心,半徑為的圓上存在點,使得為坐標原點),求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在歲到歲的人群中隨機調查了人,并得到如圖所示的頻率分布直方圖,在這人中不支持“延遲退休年齡政策”的人數與年齡的統(tǒng)計結果如圖所示:

年齡

不支持“延遲退休年齡政策”的人數

(1)由頻率分布直方圖,估計這人年齡的平均數;

(2)根據以上統(tǒng)計數據填寫下面的列聯表,據此表,能否在犯錯誤的概率不超過的前提下,認為以歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計

不支持

支持

總計

附:

參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)在R上存在導數 ,有,在 上, ,若 ,則實數m的取值范圍為( )

A.B.

C.[-3,3]D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】產能利用率是指實際產出與生產能力的比率,工r產能利用率是衡量工業(yè)生產經營狀況的重要指標.下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產能利用率的折線圖.

在統(tǒng)計學中,同比是指本期統(tǒng)計數據與上一年同期統(tǒng)計數據相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數據與上期統(tǒng)計數據相比較,例如2015年第二季度與2015年第一季度相比較.

據上述信息,下列結論中正確的是( ).

A. 2015年第三季度環(huán)比有所提高B. 2016年第一季度同比有所提高

C. 2017年第三季度同比有所提高D. 2018年第一季度環(huán)比有所提高

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數學中有很多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一,給出下列四個結論,其中正確的選項是( )

A.曲線C關于坐標原點對稱

B.曲線C恰好經過6個整點(即橫、縱坐標均為整數的點)

C.曲線C上任意一點到原點的距離最小值為1

D.曲線C所圍成的區(qū)域的面積小于4

查看答案和解析>>

同步練習冊答案