【題目】設(shè)關(guān)于x的一元二次方程x2﹣2ax+b2=0.
(1)若a是從0、1、2、3四個數(shù)中任取的一個數(shù),b是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]內(nèi)任取的一個數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個數(shù),求上述方程有實根的概率.
【答案】
(1)解:∵關(guān)于x的一元二次方程x2﹣2ax+b2=0方程有實根,∴△=4a2﹣4b2≥0,
即a≥b
∵a是從0、1、2、3四個數(shù)中任取的一個數(shù),b是從0、1、2三個數(shù)中任取的一個數(shù),
∴轉(zhuǎn)化為古典概率,
總的基本事件有4×3=12個,符合題意的有9個,
上述方程有實根的概率為 = .
(2)解:∵關(guān)于x的一元二次方程x2﹣2ax+b2=0,∴,△=4a2﹣4b2≥0,
即a≥b,且a∈[0,3],b∈[0,2],
建立幾何概率:點(a,b),
S的幾何圖形為矩形;面積為6,符合條件的圖形Ω的面積為4,
方程有實根的概率為: .
【解析】(1)關(guān)于x的一元二次方程x2﹣2ax+b2=0,△=4a2﹣4b2≥0,轉(zhuǎn)化為古典概率求解.(2)轉(zhuǎn)化為幾何概率求解.
【考點精析】通過靈活運用二次函數(shù)在閉區(qū)間上的最值,掌握當時,當時,;當時在上遞減,當時,即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}前n項和
(1)求數(shù)列{an}的通項公式;
(2)若 ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的5道題。規(guī)定每次考試都從備選的10道題中隨機抽出3道題進行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,至少得15分才能入選.
(I)求甲能入選的概率.
(II)求乙得分的分布列和數(shù)學期望;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均數(shù),方差分別是( )
A.3,
B.3,
C.4,
D.4,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,如果a,b,c成等差數(shù)列,B=60°,△ABC的面積為3 ,那么b等于( )
A.2
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達標,分別從兩廠隨機各選取了10個輪胎,將每個輪胎的寬度(單位:mm)記錄下來并繪制出如下的折線圖:
(1)分別計算甲、乙兩廠提供的10個輪胎寬度的平均值;
(2)輪胎的寬度在內(nèi),則稱這個輪胎是標準輪胎.試比較甲、乙兩廠分別提供的10個輪胎中所有標準輪胎寬度的方差的大小,根據(jù)兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱臺中, 側(cè)面與側(cè)面是全等的梯形,若,且.
(Ⅰ)若, ,證明: ∥平面;
(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐P﹣ABC中,PA⊥平面ABC,AB=BC=AC=2,PA= ,E,F(xiàn)分別是PB,BC的中點,則EF與平面PAB所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com