【題目】已知的展開式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等.

(1)求的值;

(2)求展開式中所有二項(xiàng)式系數(shù)的和;

(3)求展開式中所有的有理項(xiàng).

【答案】(1)5;(2)32;(3)見解析

【解析】

(1)根據(jù)展開式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等,列出方程求出n的值;
(2)利用展開式中所有二項(xiàng)式系數(shù)的和為2n,即可求出結(jié)果;
(3)根據(jù)二項(xiàng)式展開式的通項(xiàng)公式,求出展開式中所有的有理項(xiàng)

二項(xiàng)式展開式的通項(xiàng)公式為

r=0,1,2,…,n);

1)根據(jù)展開式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等,得 解得n=5;

2)展開式中所有二項(xiàng)式系數(shù)的和為

3)二項(xiàng)式展開式的通項(xiàng)公式為r=0,1,2,,5;

當(dāng)r=0,2,4時(shí),對(duì)應(yīng)項(xiàng)是有理項(xiàng),

所以展開式中所有的有理項(xiàng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幼兒園為訓(xùn)練孩子的數(shù)字運(yùn)算能力,在一個(gè)盒子里裝有標(biāo)號(hào)為1,2,3,4,5的卡片各2張,讓孩子從盒子里任取3張卡片,按卡片上最大數(shù)字的9倍計(jì)分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數(shù)字

(1)求取出的3張卡片上的數(shù)字互不相同的概率;

(2)求隨機(jī)變量x的分布列;

(3)若孩子取出的卡片的計(jì)分超過30分,就得到獎(jiǎng)勵(lì),求孩子得到獎(jiǎng)勵(lì)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的公差為d,關(guān)于x的不等式 x2+(a1 )x+c≥0的解集是[0,22],則使得數(shù)列{an}的前n項(xiàng)和大于零的最大的正整數(shù)n的值是(
A.11
B.12
C.13
D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校食堂早餐只有花卷、包子、面條和蛋炒飯四種主食可供食用,有5名同學(xué)前去就餐,每人只選擇其中一種,且每種主食都至少有一名同學(xué)選擇.已知包子數(shù)量不足僅夠一人食用,甲同學(xué)腸胃不好不會(huì)選擇蛋炒飯,則這5名同學(xué)不同的主食選擇方案種數(shù)為________(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求f(x)在[1,m](m>1)上的最小值;
(2)若關(guān)于x的不等式f2(x)﹣nf(x)>0有且只有三個(gè)整數(shù)解,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下命題:

若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域?yàn)?/span>{0};

若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);

若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);

若函數(shù)fx)存在反函數(shù)f1x),且f1x)與fx)不完全相同,則fx)與f1x)圖象的公共點(diǎn)必在直線y=x上;

其中真命題的序號(hào)是 .(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有an= +2成立.
(1)記bn=log2an , 求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),x∈(b﹣3,2b)是奇函數(shù),

(1)求a,b的值;

(2)若f(x)是區(qū)間(b﹣3,2b)上的減函數(shù)且f(m﹣1)+f(2m+1)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案