分析 (1)設(shè)A(x1,y1),B(x2,y2),設(shè)直線AB的方程為x=my+$\frac{p}{2}$,聯(lián)立方程組,根據(jù)A,B兩點的縱坐標(biāo)之積為-4,即可求出p的值,
(2)表示出直線BD的方程可表示為,y=$\frac{{y}_{2}}{{x}_{2}-4}$(x-4)①,拋物線C的準(zhǔn)線方程為,x=-1②,構(gòu)成方程組,解得P的坐標(biāo),求出直線AP的斜率,得到直線AP的方程,求出交點坐標(biāo)即可.
解答 解:(1)設(shè)A(x1,y1),B(x2,y2),
設(shè)直線AB的方程為x=my+$\frac{p}{2}$
與拋物線的方程聯(lián)立$\left\{\begin{array}{l}{{y}^{2}=2px}\\{x=my+\frac{p}{2}}\end{array}\right.$,得y2-2mpy-p2=0,
∴y1•y2=-p2=-4,
解得p=±2,
∵p>0,
∴p=2,
點評 本題考查拋物線的方程,考查直線與拋物線的位置關(guān)系,考查直線過定點,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 26 | B. | 30 | C. | 36 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-$\sqrt{3}$ | B. | 2+$\sqrt{3}$ | C. | 3-$\sqrt{3}$ | D. | 3+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com