【題目】已知橢圓的左、右焦點分別為, , 為橢圓的上頂點, 為等邊三角形,且其面積為, 為橢圓的右頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓相交于兩點(不是左、右頂點),且滿足,試問:直線是否過定點?若過定點,求出該定點的坐標,否則說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,圓的圓心為.已知點,且為圓上的動點,線段的中垂線交于點.
(Ⅰ)求點的軌跡方程;
(Ⅱ)設(shè)點的軌跡為曲線,拋物線: 的焦點為., 是過點互相垂直的兩條直線,直線與曲線交于, 兩點,直線與曲線交于, 兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐, 平面,底面中, , ,且, 為的中點.
(1)求證:平面平面;
(2)問在棱上是否存在點,使平面,若存在,請求出二面角的余弦值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左、右焦點分別為,且與拋物線的焦點重合.
(1)求橢圓的標準方程;
(2)若過的直線交橢圓于兩點,過的直線交橢圓于兩點,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 的圖象在處的切線方程為.
(1)求函數(shù)的單調(diào)區(qū)間與極值;
(2)若存在實數(shù),使得成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標方程;
(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是當前主要的社交應(yīng)用之一,有著幾億用戶,覆蓋范圍廣,及時快捷,作為移動支付的重要形式,微信支付成為人們支付的重要方式和手段。某公司為了解人們對“微信支付”認可度,對年齡段的人群隨機抽取人進行了一次“你是否喜歡微信支付”的問卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組號 | 分組 | 喜歡微信支付的人數(shù) | 喜歡微信支付的人數(shù) 占本組的頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
第六組 |
(1)補全頻率分布直方圖,并求, , 的值;
(2)在第四、五、六組“喜歡微信支付”的人中,用分層抽樣的方法抽取人參加“微信支付日鼓勵金”活動,求第四、五、六組應(yīng)分別抽取的人數(shù);
(3)在(2)中抽取的人中隨機選派人做采訪嘉賓,求所選派的人沒有第四組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村計劃建造一個室內(nèi)面積為800m2的矩形蔬菜溫室,在室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地.當矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大種植面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com