分析 (1)設(shè)圓的方程為x2+y2+Dx+Ey+F=0,代入點(diǎn)的坐標(biāo),求出D,E,F(xiàn),令x=0,即可得出結(jié)論.
(2)先求出圓M的圓心和半徑,再設(shè)動(dòng)圓N的圓心N的坐標(biāo)為(a,b),求出圓心距,根據(jù)圓N與圓M有公共點(diǎn),則R-r≤d≤R+r,即可求出a的取值范圍.
解答 解:(1)設(shè)圓的方程為x2+y2+Dx+Ey+F=0,則$\left\{\begin{array}{l}{1+9+D+3E+F=0}\\{16+4+4D+2E+F=0}\\{1+49+D-7E+F=0}\end{array}\right.$,
∴D=-2,E=4,F(xiàn)=-20,
∴x2+y2-2x+4y-20=0,
令x=0,可得y2+4y-20=0,
∴y=-2±2$\sqrt{6}$,
∴|PQ|=4$\sqrt{6}$,
(2)由(1)可得圓M的方程(x-1)2+(y-2)2=25,
則圓M的圓心的坐標(biāo)為(1,2),半徑為r=5,
設(shè)動(dòng)圓N的圓心N的坐標(biāo)為(a,b),R=10,
則2a-b+6=0,
即b=2a+6,
∴兩圓的圓心距為d=$\sqrt{(a-1)^{2}+(2a+6-2)^{2}}$,
∵圓N與圓M有公共點(diǎn),
∴R-r≤d≤R+r,
∴5≤d≤15,
∴25≤(a-1)2+(2a+4)2≤225,
即$\left\{\begin{array}{l}{5{a}^{2}+14a-8≥0}\\{5{a}^{2}+14a-208≤0}\end{array}\right.$,
解得-3-$\sqrt{41}$≤a≤-4,或-2≤a≤-3+$\sqrt{41}$,
故a的取值范圍為[-3-$\sqrt{41}$,-4]∪[-2,-3+$\sqrt{41}$]
點(diǎn)評(píng) 本題考查圓的方程,圓與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,確定圓的方程是關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 10 | C. | 15 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com