在△ABC中,(a+c)(a-c)=b(b+
2
c),則A=
 
考點(diǎn):余弦定理
專題:解三角形
分析:利用余弦定理即可得出.
解答: 解:∵(a+c)(a-c)=b(b+
2
c),
b2+c2-a2=-
2
bc
,
∴cosA=
b2+c2-a2
2bc
=-
2
2

∵A∈(0,π),
A=
4

故答案為:
4
點(diǎn)評(píng):本題考查了余弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)圓柱形容器里裝有水,放在水平面上,現(xiàn)將容器傾斜,這時(shí)水面是一個(gè)橢圓,當(dāng)圓柱的母線AB與地面所成角θ=
π
6
時(shí),橢圓的離心率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二項(xiàng)式(x-
1
2
)
n
(n∈Nn)展開式的二項(xiàng)式系數(shù)和與各項(xiàng)系數(shù)和分別為an、bn,則
a1+a2+…+an
b1+b2+…+bn
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=(
1
2
|x+2|
(1)畫出函數(shù)的圖象;
(2)由圖象指出函數(shù)的單調(diào)區(qū)間;
(3)由圖象指出,當(dāng)x的何值時(shí)函數(shù)有最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,1,0)、B(-1,0,-1)、C(2,1,1),若點(diǎn)P(x,0,z)滿足PA⊥AB,PA⊥AC,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

確定三角函數(shù)式
tan(-3)cos5
sin8
的符號(hào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=1,前n項(xiàng)和Sn滿足條件
S2n
Sn
=
4n+2
n+1
,n=1,2…,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=120°,S△ABC=
3
,設(shè)O為△ABC的外心,當(dāng)BC=
21
時(shí),求
AO
BC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系x Oy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,直線l:x-my-1=0(m∈R)過橢圓C的右焦點(diǎn)F,且交橢圓C于 A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)D(
5
2
,0),連結(jié) BD,過點(diǎn) A作垂直于y軸的直線l1,設(shè)直線l1與直線 BD交于點(diǎn) P,試證明:點(diǎn) P的橫坐標(biāo)為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案