【題目】謝爾賓斯基三角形(英語(yǔ):Sierpinskitriangle)是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出.具體操作是:先取一個(gè)實(shí)心正三角形(圖1),挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形)(圖2),然后在剩下的三個(gè)小三角形中又各挖去一個(gè)“中心三角形”(圖3),我們用黑色三角形代表剩下的面積,用上面的方法可以無(wú)限連續(xù)地作下去.若設(shè)操作次數(shù)為3(每挖去一次中心三角形算一次操作),在圖中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自黑色三角形的概率為__________.

【答案】

【解析】

根據(jù)三角形相似容易知黑色三角形面積與最大三角形面積之比,根據(jù)幾何概型的概率計(jì)算公式,即可求得.

由圖可知,操作次數(shù)為時(shí),黑色三角形的面積與最大三角形的面積之比為.

當(dāng)時(shí),概率為.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率,其右焦點(diǎn)為.

1)求橢圓的方程;

2)過(guò)作夾角為的兩條直線分別交橢圓,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某屆奧運(yùn)會(huì)上,中國(guó)隊(duì)以261826銅的成績(jī)稱金牌榜第三、獎(jiǎng)牌榜第二,某校體育愛(ài)好者在高三年級(jí)一班至六班進(jìn)行了“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”的滿意度調(diào)查結(jié)果只有“滿意”和“不滿意”兩種,從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如表:

班號(hào)

一班

二班

三班

四班

五班

六班

頻數(shù)

5

9

11

9

7

9

滿意人數(shù)

4

7

8

5

6

6

(1)在高三年級(jí)全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)該生持滿意態(tài)度的概率;

(2)若從一班至二班的調(diào)查對(duì)象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對(duì)“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”不滿意的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為,,點(diǎn)A為橢圓C上異于左右頂點(diǎn)的任意一點(diǎn),A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為B,且

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若A關(guān)于x軸的對(duì)稱點(diǎn),設(shè)點(diǎn),連接NA,直線NA與橢圓C相交于點(diǎn)E,直線x軸相交于點(diǎn)M,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角AB,C的對(duì)邊分別為a,b,c,已知asinBbsinA).

1)求A;

2D是線段BC上的點(diǎn),若ADBD2,CD3,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】)過(guò)點(diǎn),離心率為,其左、右焦點(diǎn)分別為,,且過(guò)焦點(diǎn)的直線交橢圓于,.

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)的坐標(biāo)為,設(shè)直線與直線的斜率分別為,試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為檢驗(yàn)兩條生產(chǎn)線的優(yōu)品率,現(xiàn)從兩條生產(chǎn)線上各抽取件產(chǎn)品進(jìn)行檢測(cè)評(píng)分,用莖葉圖的形式記錄,并規(guī)定高于分為優(yōu)品.件的評(píng)分記錄如下,第件暫不公布.

1)求所抽取的生產(chǎn)線上的個(gè)產(chǎn)品的總分小于生產(chǎn)線上的第個(gè)產(chǎn)品的總分的概率;

2)已知生產(chǎn)線的第件產(chǎn)品的評(píng)分分別為.

①?gòu)?/span>生產(chǎn)線的件產(chǎn)品里面隨機(jī)抽取件,設(shè)非優(yōu)品的件數(shù)為,求的分布列和數(shù)學(xué)期望;

②以所抽取的樣本優(yōu)品率來(lái)估計(jì)生產(chǎn)線的優(yōu)品率,從生產(chǎn)線上隨機(jī)抽取件產(chǎn)品,記優(yōu)品的件數(shù)為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的三棱錐中,是邊長(zhǎng)為2的等邊三角形,,的中位線,為線段的中點(diǎn).

1)證明:.

2)若二面角為直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦·曼得爾布羅在20世紀(jì)70年代創(chuàng)立的一門(mén)新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖甲所示的分形規(guī)律可得如圖乙所示的一個(gè)樹(shù)形圖:記圖乙中第行黑圈的個(gè)數(shù)為,則(1_______;(2______

查看答案和解析>>

同步練習(xí)冊(cè)答案