已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是x+y=0,邊AC上的高BE所在直線的方程是x+3y+4=0.
(1)求點B、C的坐標;   (2)求△ABC的外接圓的方程.
(1)由題意得直線BE的斜率為-
1
3
,根據(jù)垂直得到直線AB的斜率為3,則直線AC:y-2=3(x-2)
聯(lián)立
x+y=0
y-2=3(x-2)
x=1
y=-1
,所以C(1,-1)
設B(a,b),代入BE:x+3y+4=0,則AB中點D(
a+2
2
,
b+2
2
)
代入直線x+y=0,
a+3b+4=0
a+2
2
+
b+2
2
=0
解得
a=-4
b=0

所以B(-4,0);

(2)設圓方程為x2+y2+Dx+Ey+F=0,
A,B,C三點代入得:
4+4+2D+2E+F=0
16-4D+F=0
1+1+D-E+F=0
,
解得
D=
9
4
E=-
11
4
F=-7

所以圓方程為x2+y2+
9
4
x-
11
4
y-7=0
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是x+y=0,邊AC上的高BE所在直線的方程是x+3y+4=0.
(1)求點B、C的坐標;   
(2)求△ABC的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是.(1)求點B、C的坐標;   (2)求△ABC的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是x+y=0,邊AC上的高BE所在直線的方程是x+3y+4=0.
(1)求點B、C的坐標;  (2)求△ABC的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:0110 期中題 題型:解答題

已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是x+y=0,邊AC上的高BE所在直線的方程是x+3y+4=0。
(1)求點B、C的坐標;
(2)求△ABC的外接圓的方程。

查看答案和解析>>

同步練習冊答案