(12分)已知二次函數(shù)f (x)=,設(shè)方程f (x)
=x的兩個(gè)實(shí)根為x1和x2
(1)如果x1<2<x2<4,且函數(shù)f (x)的對(duì)稱(chēng)軸為x=x0,求證:x0>—1;
(2)如果∣x1∣<2,,∣x2—x1∣=2,求的取值范圍.

解:(1)設(shè)g(x)=" f" (x)—x
=,且g(4)>0,即


(2)由g(x)=
①若0<x1<2,則x2一x1=2,即x2=x1+2>2,∴g(2)=4a+2b—1<0,
,代入上式得
②若一2<x1<0,則x2=一2+x1<一2,∴g(一2)<0,即4a-2b+3<0,同理可求得
故當(dāng)0<x1<2時(shí),;當(dāng)一2<x1<0時(shí),

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中為常數(shù)
(1)證明:函數(shù)在R上是減函數(shù).
(2)當(dāng)函數(shù)是奇函數(shù)時(shí),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知函數(shù)f(x)=
(1)若函數(shù)定義域?yàn)閇3,4],求函數(shù)值域
(2)若函數(shù)定義域?yàn)閇-3,4],求函數(shù)值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知是定義在上的奇函數(shù),且,若時(shí),有.
(1)解不等式
(2)若對(duì)所有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)已知定義在上的函數(shù)的圖象如右圖所示

(Ⅰ)寫(xiě)出函數(shù)的周期;
(Ⅱ) 確定函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖像與軸的交點(diǎn)至少有一個(gè)在原點(diǎn)的右側(cè),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)不同的交點(diǎn). 經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為.
(I)求實(shí)數(shù)的取值范圍;
(II)求圓的一般方程;
(III)圓是否經(jīng)過(guò)某個(gè)定點(diǎn)(其坐標(biāo)與無(wú)關(guān))?若存在,請(qǐng)求出點(diǎn)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次函數(shù),對(duì)任意實(shí)數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式和值域;
(2)試寫(xiě)出一個(gè)區(qū)間,使得當(dāng)時(shí),數(shù)列在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(3)已知,是否存在非零整數(shù),使得對(duì)任意,都有
 恒成立,若存在,
求之;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù),且。
(1)求的值;
(2)判定的奇偶性;
(3)判斷上的單調(diào)性,并給予證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案