7.已知函數(shù)f(x)=x3-3ax2-9a2x+a3
(1)設a=1,求函數(shù)f(x)的極值;
(2)若$\frac{1}{4}$<a≤1,且當x∈[1,4a]時,|f′(x)|≤12a恒成立,求a的取值范圍.

分析 (1)把a=1代入,找出導函數(shù)為0的自變量,看在自變量左右兩側導函數(shù)的符號來求極值即可;
(2)轉化為求導函數(shù)的絕對值在x∈[1,4a]上的最大值即可.

解答 解:(1)當a=1時,對函數(shù)f(x)求導數(shù),得f′(x)=3x2-6x-9.
令f′(x)=0,解得x1=-1,x2=3.
列表討論f(x),f′(x)的變化情況:

x(-∞,-1)-1(-1,3)3(3,+∞)
f′(x)+0-0+
f(x)極大值6↓  極小值-26
所以,f(x)的極大值是f(-1)=6,極小值是f(3)=-26.
(2)f′(x)=3x2-6ax-9a2的圖象是一條開口向上的拋物線,關于x=a對稱.
若$\frac{1}{4}$<a≤1,則f′(x)在[1,4a]上是增函數(shù),
從而(x)在[1,4a]上的最小值是f′(1)=3-6a-9a2,最大值是f′(4a)=15a2
由|f′(x)|≤12a,得-12a≤3x2-6ax-9a2≤12a,
于是有(1)=3-6a-9a2≥-12a,且f′(4a)=15a2≤12a.
由f′(1)≥-12a得-$\frac{1}{3}$≤a≤1,由f′(4a)≤12a得0≤a≤$\frac{4}{5}$.
所以a∈($\frac{1}{4}$,1]∩[-$\frac{1}{3}$,1]∩[0,$\frac{4}{5}$],即a∈($\frac{1}{4}$,$\frac{4}{5}$].

點評 本題涉及到利用導函數(shù)求極值.利用導函數(shù)求極值時,須先求導函數(shù)為0的根,再根據(jù)導函數(shù)為0的根左右兩側的符號來求極大值和極小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知對任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立.若數(shù)列{an}滿足${a_n}=f({2^n})(n∈{N^*})$,且a1=2,則數(shù)列{an}的前n項和${S_n}=(n-1){2^{n+1}}+2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}滿足$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+…+$\frac{{a}_{n}-1}{{2}^{n}}$=n2+n(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{an}的前n項和為Sn,問是否存在實數(shù)λ使得$\frac{{{S_{n+1}}}}{{{a_n}+λ(n+1)}}$是一個與n無關的常數(shù),若存在,求出λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.將石子擺成如圖所示的梯形形狀.稱數(shù)列5,9,14,20,…為“梯形數(shù)”.根據(jù)圖形的構成,此數(shù)列的第2 014項與5的差,即a2014-5=(  )
A.2 018×2 012B.2 020×2 013C.1 009×2 012D.1 010×2 013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在四邊形ABCD中,任意兩頂點之間恰做一個向量,做出所有的向量,其中3邊向量之和為零向量的三角形稱為“零三角形”,設以這4個頂點確定的三角形的個數(shù)為n,設在所有不同情況中的“零三角形”個數(shù)的最大值為m,則$\frac{m}{n}$等于( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在某市進行城市環(huán)境建設中,要把一個三角形的區(qū)域改造成室內公園,經(jīng)過測量得到這個三角形區(qū)域的三條邊長分別為10m,8m,14m,這個區(qū)域的面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知c=2,C=$\frac{π}{3}$.
(Ⅰ)當2sin2A+sin(2B+C)=sinC時,求△ABC的面積;
(Ⅱ)求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.若非空集合A={x|x2+ax+b=0},集合B={-2,1},且A⊆B,求實數(shù)a•b的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+1,x≥0\\{x^2}-1,x<0\end{array}$,則f(f(-2))=4.

查看答案和解析>>

同步練習冊答案