在數(shù)列{an}中,a1=-1,a2=2,當n∈N,an+2=5an+1-6an,求通項公式an
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:根據(jù)數(shù)列的遞推關(guān)系,利用構(gòu)造法即可得到結(jié)論.
解答: 解:∵an+2=5an+1-6an,
∴an+2-3an+1=2an+1-6an=2(an+1-3an),
即數(shù)列{an+1-3an}是以a2-3a1=2+3=5為首項,公比q=2的等比數(shù)列,
則an+1-3an=5•2n-1
即an+1+5•2n=3(an+5•2n-1),
即數(shù)列{an+5•2n-1}是以a1+5•20=-1+5=4為首項,公比q=3的等比數(shù)列,
則an+5•2n-1=4•3n-1
即an=4•3n-1-5•2n-1
故通項公式an=4•3n-1-5•2n-1
點評:本題主要考查數(shù)列通項公式的求解,利用條件構(gòu)造等比數(shù)列是解決本題的關(guān)鍵.本題比較復(fù)雜.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x∈R|
1
2
2x<8},B={x∈R|-2<x≤4}
,則A∩B等于(  )
A、(-1,3)
B、(-1,4)
C、(
1
2
,3)
D、(
1
2
,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是正方形,且SA=SB=SC=SD,SO是這個三棱錐的高,SM垂直于BC,垂足為M,若SO=8,SM=10.
(1)求側(cè)棱長;
(2)求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,PD∥MA,MA⊥AD,PM⊥平面CDM,MA=
1
2
PD.
(Ⅰ)求證:平面ABCD⊥平面AMPD;
(Ⅱ)若BC與PM所成的角為45°,求二面角M-BP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體的棱長a,點C,D分別是兩條棱的中點.
(1)證明:四邊形ABCD是一個梯形;
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右準線為x=
3
2
6
,離心率為
6
3
,A(-a,0),B(0,b),光線通過點C(-1,0)射到線段AB上的點T(端點除外),經(jīng)過線段AB反射,其反射光線與橢圓交于點M.
(1)求橢圓的方程;
(2)若TC=TM,求T點橫坐標m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復(fù)數(shù)z滿足z•
.
z
+z+
.
z
=3,則z對應(yīng)軌跡的參數(shù)方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)曲線C是動點P到定點F(2,0)的距離和到定直線x=
1
2
的距離之比為2的軌跡.   
(Ⅰ)求曲線C的方程;
(Ⅱ)已知存在直線l經(jīng)過點M(1,m)(m∈R),交曲線C于E,F(xiàn)兩點,使得M為EF的中點.
(i)求m的取值范圍; 
(ii)求|EF|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且an+Sn=4.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)k,使
Sk+1-2
Sk-2
>2成立.

查看答案和解析>>

同步練習冊答案