解答:
解(1):(1)設(shè)x∈[-e,0),則-x∈(0,e],∴f(-x)=-ax+ln(-x),
又∵f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),
∴f(x)=-f(-x)=ax-ln(-x),
∴函數(shù)f(x)的解析式為f(x)=
| ax-ln(-x),x∈[-e,0) | ax+lnx,x∈(0,e] |
| |
證明:當(dāng)x∈[-e,0)且a=-1時,f(x)=-x-ln(-x),g(x)=
,設(shè)h(x)=
+因為f′(x)=-1
-=-
,所以當(dāng)-e≤x≤-1時,f′(x)<0,此時f(x)單調(diào)遞減;當(dāng)-1<x<0時,f′(x)>0,此時f(x)單調(diào)遞增,所以f(x)
min=f(-1)=1>0,
又因為h′(x)=
,所以當(dāng)x∈[-e,0)時,h′(x)<0,此時h(x)單調(diào)遞減;所以h(x)max=h(-e)=
+<+=1=f(x)
min,
所以當(dāng)x∈[-e,0)時,f(x)>h(x)即f(x)>g(x)+
;
(2)解:假設(shè)存在實數(shù)a,使得當(dāng)x∈[-e,0)時,f(x)=ax-ln(-x)有最小值是3,
則f′(x)=a-
=
(。┊(dāng)a=0,x∈[-e,0)時,f′(x)=-
>0.f(x)在區(qū)間[-e,0)上單調(diào)遞增,f(x)
min=f(-e)=-1,不滿足最小值是3
(ⅱ)當(dāng)a>0,x∈[-e,0)時,f'(x)>0,f(x)在區(qū)間[-e,0)上單調(diào)遞增,f(x)
min=f(-e)=-ae-1<0,也不滿足最小值是3
(ⅲ)當(dāng)
-≤a<0,由于x∈[-e,0),則f′(x)=a-
≥0,故函數(shù)f(x)=ax-ln(-x)是[-e,0)上的增函數(shù).∴f(x)
min=f(-e)=-ae-1=3,解得a=-
<-
(舍去)
(ⅳ)當(dāng)a<-
時,
則當(dāng)-e≤x<
時,f′(x)=a-
<0,此時函數(shù)f(x)=ax-ln(-x)是減函數(shù);
當(dāng)
<x<0時,f′(x)=a-
>0,此時函數(shù)f(x)=ax-ln(-x)是增函數(shù).
∴f(x)
min=f(
)=1-ln(-
)=3,解得a=-e
2綜上可知,存在實數(shù)a=-e
2,使得當(dāng)x∈[-e,0)時,f(x)有最小值3.