7.已知等差數(shù)列{an}的前n項和為Sn,a10=30,a15=40
(1)求通項an
(2)若Sn=210,求n.

分析 (1)由等差數(shù)列通項公式列出方程組,求出首項和公差,由此能求出an
(2)求出Sn=n2+11n,由此能求出n.

解答 解:(1)設等差數(shù)列{an}首項為a1,公差為d,依題意可得,
$\left\{\begin{array}{l}{{a}_{10}={a}_{1}+9d=30}\\{{a}_{15}={a}_{1}+14d=40}\end{array}\right.$,….(2分)
解之得$\left\{\begin{array}{l}{{a}_{1}=12}\\{d=2}\end{array}\right.$,….(4分)
∴an=a1+(n-1)d=12+(n-1)×2=2n+10.…..(5分)
(2)由(1)知:
Sn=na1+$\frac{n(n-1)d}{2}$=12n+$\frac{n(n-1)×2}{2}$=n2+11n,…(7分)
∵Sn=210,n2+n=210,解之得n=10或n=-21.(舍去)…..(9分)
∴n=10.…(10分)

點評 本題考查等差數(shù)列的通項公式和項數(shù)的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個單位向量,其夾角為θ,若向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,|$\overrightarrow{a}$|=1,則θ=( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象與x軸的交點中,相鄰兩個交點之間的距離為$\frac{π}{2}$,且圖象上一個最低點為M($\frac{2π}{3}$,-2).則f(x)的解析式為f(x)=2sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在復平面上,復數(shù)$\frac{2+i}{i}$的共軛復數(shù)對應的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在正方體ABCD-A1B1C1D1中.
(Ⅰ)證明:BD1⊥A1D;
(Ⅱ)求$\overrightarrow{B{C}_{1}}$與$\overrightarrow{AC}$夾角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知某正四面體的內(nèi)切球體積是1,則該正四面體的外接球的體積是(  )
A.27B.16C.9D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=2sin$\frac{x}{4}$cos$\frac{x}{4}$-2$\sqrt{3}$sin2$\frac{x}{4}$+$\sqrt{3}$.
(1)求f(x)的最小正周期及最值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{24}}$]上的最大值和最小值以及取得最大值和最小值時自變量的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和Sn=1-an,其中n∈N*
(I)求{an}的通項公式;
(II)若bn=nan,求{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案