【題目】設(shè)a1 , a2 , …,an為1,2,…,n按任意順序做成的一個(gè)排列,fk是集合{ai|ai<ak , i>k}元素的個(gè)數(shù),而gk是集合{ai|ai>ak , i<k}元素的個(gè)數(shù)(k=1,2,…,n),規(guī)定fn=g1=0,例如:對(duì)于排列3,1,2,f1=2,f2=0,f3=0
(I)對(duì)于排列4,2,5,1,3,求
(II)對(duì)于項(xiàng)數(shù)為2n﹣1 的一個(gè)排列,若要求2n﹣1為該排列的中間項(xiàng),試求的最大值,并寫(xiě)出相應(yīng)得一個(gè)排列
(Ⅲ)證明=
【答案】解:(I)∵排列4,2,5,1,3,
fk是集合{ai|ai<ak , i>k}元素的個(gè)數(shù),
∴f1=3,f2=1,f3=2,f4=0,f5=0,
∴=3+1+2+0+0=6.
(II)當(dāng)項(xiàng)數(shù)為2n﹣1 的一個(gè)排列,
2n﹣1為該排列的中間項(xiàng),前面有n項(xiàng),后面有n項(xiàng),
∴要求的最大值,只要使得排列滿(mǎn)足n到2n﹣2排列到2n﹣1的前面,1到n﹣1排列到2n﹣1的后面,
∴g1=0,g2=1,g3=2,…g2n﹣1=2n﹣2,
∴的最大值是=(2n﹣1)(n﹣1)
比如舉一個(gè)包含7項(xiàng)的數(shù)列:6,5,4,7,3,2,1
(III)∵fk是集合{ai|ai<ak , i>k}元素的個(gè)數(shù),
而gk是集合{ai|ai>ak , i<k}元素的個(gè)數(shù)(k=1,2,…,n),
規(guī)定fn=g1=0,
∴fn﹣1=g2
fn﹣2=g3
…
∴f1=gn .
∴=
【解析】(I)直接按定義來(lái)操作,根據(jù)fk是集合{ai|ai<ak , i>k}元素的個(gè)數(shù),看出符合條件的元素的個(gè)數(shù),得到結(jié)果.
(II)(II)當(dāng)項(xiàng)數(shù)為2n﹣1 的一個(gè)排列,2n﹣1為該排列的中間項(xiàng),前面有n項(xiàng),后面有n項(xiàng),要求的最大值,只要使得排列滿(mǎn)足n到2n﹣2排列到2n﹣1的前面,1到n﹣1排列到2n﹣1的后面,得到結(jié)果.
(III)fk是集合{ai|ai<ak , i>k}元素的個(gè)數(shù),而gk是集合{ai|ai>ak , i<k}元素的個(gè)數(shù)(k=1,2,…,n),規(guī)定fn=g1=0,依次得到fn﹣1=g2 , …,得到各項(xiàng)之和相等.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系內(nèi),已知是以點(diǎn)為圓心的圓上的一點(diǎn),折疊該圓兩次使點(diǎn)分別與圓上不相同的兩點(diǎn)(異于點(diǎn))重合,兩次的折痕方程分別為和,若圓上存在點(diǎn),使得,其中點(diǎn)、,則的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)請(qǐng)指出函數(shù)的定義域、周期性和奇偶性;(不必證明)
(2)請(qǐng)以正弦函數(shù)的性質(zhì)為依據(jù),并運(yùn)用函數(shù)的單調(diào)性定義證明:在區(qū)間上單調(diào)遞減.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是樣本容量為200的頻率分布直方圖.根據(jù)樣本的頻率分布直方圖估計(jì),樣本數(shù)落在[6,10]內(nèi)的頻數(shù)為 ,數(shù)據(jù)落在(2,10)內(nèi)的概率約為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究機(jī)構(gòu)為了調(diào)研當(dāng)代中國(guó)高中生的平均年齡,從各地多所高中隨機(jī)抽取了40名學(xué)生進(jìn)行年齡統(tǒng)計(jì),得到結(jié)果如下表所示:
年齡(歲) | |||||
數(shù)量 | 6 | 10 | 12 | 8 | 4 |
(Ⅰ)若同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表,試估計(jì)這批學(xué)生的平均年齡;
(Ⅱ)若在本次抽出的學(xué)生中隨機(jī)挑選2人,記年齡在間的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列的前項(xiàng)和為,若數(shù)列的各項(xiàng)按如下規(guī)律排列:,,,,,,,,,,…,,, …,,…有如下運(yùn)算和結(jié)論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項(xiàng)和為;④若存在正整數(shù),使,,則.其中正確的結(jié)論是_____.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,若= .
(1)求角A;
(2)若f(x)=sinx+cos(x+A),求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)民族文化,某中學(xué)舉行了“我愛(ài)國(guó)學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了60名學(xué)生的成績(jī)(滿(mǎn)分100分)作為樣本,其中成績(jī)不低于80分的學(xué)生被評(píng)為優(yōu)秀生,得到成績(jī)分布的頻率分布直方圖如圖所示.
(1)若該所中學(xué)共有2000名學(xué)生,試?yán)脴颖竟烙?jì)全校這次考試中優(yōu)秀生人數(shù);
(2)(i)試估計(jì)這次參加考試的學(xué)生的平均成績(jī)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(ii)若在樣本中,利用分層抽樣的方法從成績(jī)不低于70分的學(xué)生中隨機(jī)抽取6人,再?gòu)闹谐槿?人贈(zèng)送一套國(guó)學(xué)經(jīng)典學(xué)籍,試求恰好抽中2名優(yōu)秀生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者。現(xiàn)從符合條件的志愿者中 隨機(jī)抽取名按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(1)若從第,,組中用分層抽樣的方法抽取名志愿者參廣場(chǎng)的宣傳活動(dòng),應(yīng)從第,,組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組志愿者有被抽中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com