1.已知函數(shù)y=acosx+b(a>0)的最大值是3,最小值是-1.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)=bsin(ax+$\frac{π}{3}$)的單調(diào)增區(qū)間.

分析 (1)根據(jù)余弦函數(shù)的性質(zhì),可知cosx的最大值為1,最小值為-1,那么:y=acosx+b的最大值為a×1+b最小值為a×(-1)+b,即可求得a,b的值.
(2)根據(jù)(1)可得a,b的值.得到f(x)的解析式,利用正弦函數(shù)的性質(zhì),2x+$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$]求解x的范圍即可得到函數(shù)f(x)的單調(diào)增區(qū)間.

解答 解:(1)由函數(shù)y=acosx+b(a>0)的最大值是3,最小值是-1.
根據(jù)余弦函數(shù)的性質(zhì):
可得:-a+b=-1,a+b=3
解得:a=2,b=1.
(2)由(1)可知a=2,b=1,
那么:函數(shù)f(x)=bsin(ax+$\frac{π}{3}$)=sin(2x+$\frac{π}{3}$)
根據(jù)正弦函數(shù)的性質(zhì):
2x+$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$]是單調(diào)增區(qū)間,即2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z
解得:kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z
所以:函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的單調(diào)增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.

點(diǎn)評(píng) 本題考查了三角函數(shù)的性質(zhì)的運(yùn)用.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在空間直角坐標(biāo)系中,點(diǎn)P(-2,1,4)關(guān)于xOy平面對(duì)稱的點(diǎn)P1的坐標(biāo)是(-2,1,-4);點(diǎn)A(1,0,2)關(guān)于點(diǎn)P對(duì)稱的點(diǎn)P2的坐標(biāo)是(-5,2,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過(1,1)的直線l與雙曲線${x^2}-\frac{y^2}{3}=1$有且僅有一個(gè)公共點(diǎn)的直線有( 。l.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.根據(jù)給出的數(shù)塔猜測(cè)123456×9+7=( 。
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.1 111 110B.1 111 111C.1 111 112D.1 111 113

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.觀察下面關(guān)于循環(huán)小數(shù)化成分?jǐn)?shù)的等式:(注意:頭上加點(diǎn)的數(shù)字)0.$\stackrel{•}{3}$=$\frac{3}{9}$=$\frac{1}{3}$,1.$\stackrel{•}{1}$$\stackrel{•}{8}$=$\frac{18}{99}$=$\frac{2}{11}$,0.$\stackrel{•}{3}$$\stackrel{•}{5}$$\stackrel{•}{2}$=$\frac{352}{999}$,0.000$\stackrel{•}{5}$$\stackrel{•}{9}$=$\frac{1}{1000}$×$\frac{59}{99}$=$\frac{59}{99000}$,據(jù)此推測(cè)循環(huán)小數(shù)0.2$\stackrel{•}{3}$可化成分?jǐn)?shù)$\frac{7}{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α,β為銳角,且sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,則tan(α-β)=-$\frac{\sqrt{7}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.甲、乙兩人同時(shí)應(yīng)聘一個(gè)工作崗位,若甲、乙被應(yīng)聘的概率分別為0.5和0.6,兩人被聘用是相互獨(dú)立的,則甲、乙兩人中最多有一人被聘用的概率為0.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.f(x)=$\frac{1}{\sqrt{1-lo{g}_{2}x}}$的定義域?yàn)椋?,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖是一個(gè)由兩個(gè)半圓錐與一個(gè)長(zhǎng)方體組合而成的幾何體的三視圖,則該幾何體的體積為(  )
A.6+$\frac{2π}{3}$B.8+$\frac{π}{3}$C.4+$\frac{2π}{3}$D.4+$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案