分析 (I)求出導函數(shù),利用導數(shù)判斷函數(shù)在[0,1]上的單調性,根據(jù)單調性求出最小值;
(II)分離參數(shù)得a<-2ex•$\sqrt{x}$+2x-1,求出右側函數(shù)在(0,+∞)上的最大值即可.
解答 解:(I)y=ln(x+1)-x,∴y′=$\frac{1}{x+1}$-1,
∵0≤x≤1,$\frac{1}{x+1}$≤1,∴y′≤0,
∴y=ln(x+1)-x在[0,1]上是減函數(shù).
∴ymin=ln2-1.
(II)∵$\frac{{a({x^2}-1)-f(x)}}{{2{e^x}}}>\sqrt{x}$,∴$\frac{-a+2x-1}{2{e}^{x}}>\sqrt{x}$,∴a<-2ex•$\sqrt{x}$+2x-1.
令h(x)=-2ex•$\sqrt{x}$+2x-1.則h′(x)=-ex(2$\sqrt{x}$+$\frac{1}{\sqrt{x}}$)+2,
∵x∈(0,+∞),∴ex>1,2$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2$\sqrt{2}$,∴-ex(2$\sqrt{x}$+$\frac{1}{\sqrt{x}}$)+2<0,
∴h(x)在(0,+∞)上是減函數(shù),∴h(x)<h(0)=-1.
∵存在x∈(0,+∞)使不等式$\frac{{a({x^2}-1)-f(x)}}{{2{e^x}}}>\sqrt{x}$成立,∴a<-1.
點評 本題考查了導數(shù)與函數(shù)的單調性的關系,函數(shù)單調性的判斷與最值,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{3}-1$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-2i | B. | 1+2i | C. | -1-2i | D. | -1+2i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com