分析 先確定直線的方程,再求出積分區(qū)間,確定被積函數(shù),由此利用定積分可求直線l與拋物線圍成的封閉圖形面積.
解答 解:拋物線x2=4y的焦點(diǎn)坐標(biāo)為(0,1),
∵直線l過拋物線C:x2=4y的焦點(diǎn)且與y軸垂直,
∴直線l的方程為y=1,
由$\left\{\begin{array}{l}{y=1}\\{{x}^{2}=4y}\end{array}\right.$,可得交點(diǎn)的橫坐標(biāo)分別為-2,2.
∴直線l與拋物線圍成的封閉圖形面積為 ${∫}_{-2}^{2}$(1-$\frac{{x}^{2}}{4}$)dx=( x-$\frac{1}{12}$x3)|$\left.\begin{array}{l}{2}\\{-2}\end{array}\right.$=$\frac{8}{3}$.
故答案是:$\frac{8}{3}$.
點(diǎn)評 本題考查封閉圖形的面積,考查直線方程,解題的關(guān)鍵是確定直線的方程,求出積分區(qū)間,確定被積函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+8i | B. | 8+2i | C. | 2-i | D. | 4+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{21}{8}$ | B. | 6 | C. | $\frac{21}{8}$或6 | D. | $\frac{21}{8}$或$\frac{75}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | $\frac{4}{3}$ | C. | $\frac{18}{5}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=($\sqrt{x}$)2與y=x | B. | y=$\sqrt{{x}^{2}}$與 y=($\sqrt{x}$)2 | C. | y=$\root{3}{{x}^{3}}$與y=$\frac{{x}^{2}}{x}$ | D. | y=($\root{3}{{x}^{3}}$)3與y=x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com