精英家教網 > 高中數學 > 題目詳情

長方體ABCD-A1B1C1D1中,B1C和C1D與底面所成的角分別為60°和45°,則異面直線B1C和DC1所成角的余弦值為


  1. A.
    數學公式
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    數學公式
A
分析:設長方體的高為1,根據B1C和C1D與底面所成的角分別為600和450,分別求出各線段的長,將C1D平移到B1A,根據異面直線所成角的定義可知∠AB1C為異面直線B1C和DC1所成角,利用余弦定理求出此角即可.
解答:

設長方體的高為1,連接B1A、B1C、AC
∵B1C和C1D與底面所成的角分別為600和450
∴∠B1CB=60°,∠C1DC=45°
∴C1D=,B1C=,BC=,CD=1則AC=
∵C1D∥B1A
∴∠AB1C為異面直線B1C和DC1所成角
cos∠AB1C=
故選A
點評:本小題主要考查異面直線所成的角,考查空間想象能力、運算能力和推理論證能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網在長方體ABCD-A1B1C1D1中,AB=BC=2,過A1、C1、B三點的平面截去長方體的一個角后,得到如圖所示的幾何體ABCD-A1C1D1,且這個幾何體的體積為10.
(1)求棱A1A的長;
(2)求點D到平面A1BC1的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,長方體ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中點,N是B1C1中點.
(1)求證:A1、M、C、N四點共面;
(2)求證:BD1⊥MCNA1;
(3)求證:平面A1MNC⊥平面A1BD1;
(4)求A1B與平面A1MCN所成的角.

查看答案和解析>>

科目:高中數學 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 則三棱錐A1-ABC的體積為(  )
A、10B、20C、30D、35

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知多面體ABCD-A1B1C1D1,它是由一個長方體ABCD-A'B'C'D'切割而成,這個長方體的高為b,底面是邊長為a的正方形,其中頂點A1,B1,C1,D1均為原長方體上底面A'B'C'D'各邊的中點.
(1)若多面體面對角線AC,BD交于點O,E為線段AA1的中點,求證:OE∥平面A1C1C;
(2)若a=4,b=2,求該多面體的體積;
(3)當a,b滿足什么條件時AD1⊥DB1,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側棱BB1的中點.
(1)求證:A1E⊥平面ADE;
(2)求三棱錐A1-ADE的體積.

查看答案和解析>>

同步練習冊答案