9.田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為A1,A2,A3,田忌的三匹馬分別為B1,B2,B3.三匹馬各比賽一次,勝兩場(chǎng)者為獲勝,雙方均不知對(duì)方的馬的出場(chǎng)順序.(用排列組合解決問(wèn)題)
(1)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示A1>B1>A2>B2>A3>B3,則田忌獲勝的概率是多大?
(2)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示A1>B1>A2>B2>B3>A3,則田忌獲勝的概率是多大?

分析 列出齊王與田忌賽馬的所有情況,從而求概率.

解答 解:記A1與B1比賽為(A1,B1),其它同理.齊王與田忌賽馬,有如下六種情況:
(A1,B1),(A2,B2),(A3,B3);(A1,B1),(A2,B3),(A3,B2);
(A1,B2),(A2,B3),(A3,B1);(A1,B2),(A2,B1),(A3,B3);
(A1,B3),(A2,B1),(A3,B2);(A1,B3),(A2,B2),(A3,B1);
(1)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示A1>B1>A2>B2>A3>B3,
其中田忌獲勝的只有一種(A1,B3),(A2,B1),(A3,B2),故田忌獲勝的概率為$\frac{1}{6}$;
(2)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示A1>B1>A2>B2>B3>A3,
其中田忌獲勝的有(A1,B3),(A2,B1),(A3,B2),或(A1,B2),(A2,B1),(A3,B3),
故田忌獲勝的概率為$\frac{2}{6}$=$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查了古典概型的識(shí)別與古典概型概率的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為60°的兩個(gè)單位向量,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$
(1)求$\overrightarrow{a}$•$\overrightarrow$的值及|$\overrightarrow{a}$+$\overrightarrow$|;      
(2)設(shè)實(shí)數(shù)t滿(mǎn)足($\overrightarrow{a}$-t$\overrightarrow$)⊥$\overrightarrow{a}$,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖是一個(gè)算法流程圖,則輸出的S的值是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓的焦點(diǎn)F1(0,-$\sqrt{7}$),F(xiàn)2(0,$\sqrt{7}$),直線y=$\frac{9\sqrt{7}}{7}$是橢圓的一條準(zhǔn)線
(1)求橢圓方程;
(2)若P為橢圓上一點(diǎn),且|PF1|=|PF2|+2,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.2015年署期,某高校3名大學(xué)生計(jì)劃去學(xué)校指定的A、B、C、D4個(gè)單位做暑假工,每人選擇其中一個(gè)單位(可以去相同的單位),求選擇A單位的人數(shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),過(guò)點(diǎn)F且垂直于一條漸近線的直線與另一條漸近線于點(diǎn)B,垂足為A,若2$\overrightarrow{FA}$+$\overrightarrow{FB}$=$\overrightarrow{0}$,則C的離心率e=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知A、B為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1與雙曲線$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1的公共頂點(diǎn)M、N分別為橢圓和雙曲線上一點(diǎn)(異于點(diǎn)A、B),$\overrightarrow{AM}$$+\overrightarrow{BM}$=λ($\overrightarrow{AN}$$+\overrightarrow{BN}$)(λ∈R),設(shè)直線AM、BM、AN、BN的斜率分別為k1、k2、k3、k4,則k1+k2+k3+k4=( 。
A.-$\frac{3}{2}$B.0C.$\frac{3}{2}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow$=(1,n-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則2m+4n的最小值為(  )
A.2B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知tan$\frac{θ}{2}$=2,則$\frac{2sinθ+cosθ}{sinθ-2cosθ}$=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案