【題目】一袋中有大小、形狀相同的2個(gè)白球和10個(gè)黑球,從中任取一球.如果取出白球,則把它放回袋中;如果取出黑球,則該球不再放回,另補(bǔ)一個(gè)白球放到袋中.在重復(fù)次這樣的操作后,記袋中的白球個(gè)數(shù)為

1)求;

2)設(shè),求;

3)證明:

【答案】123)證明見(jiàn)解析

【解析】

1)根據(jù)的取值以及概率,即可容易求得數(shù)學(xué)期望;

2)求得當(dāng)時(shí),以及時(shí)的概率,則問(wèn)題得解;

3)對(duì)第次白球個(gè)數(shù)的數(shù)學(xué)期望分為第次取出來(lái)的是白球,或者黑球進(jìn)行討論,即可證明.

1)∵,

,,

2)∵當(dāng)時(shí),

當(dāng)時(shí),第次取出來(lái)有個(gè)白球的可能性有兩種:

次袋中有個(gè)白球,顯然每次取出球后,球的總數(shù)保持不變,

即袋中有個(gè)白球,個(gè)黑球,第次取出來(lái)的也是白球的概率為

次袋中有個(gè)白球,第次取出來(lái)的是黑球,由于每次總數(shù)為12個(gè),

故此時(shí)黑球數(shù)為個(gè),這種情況發(fā)生的概率為

,

∴綜上可知,

3)∵第次白球個(gè)數(shù)的數(shù)學(xué)期望分為兩類(lèi)情況:

次白球個(gè)數(shù)的數(shù)學(xué)期望為,由于白球和黑球的總數(shù)為12

次取出來(lái)的是白球的概率為,

次取出來(lái)的是黑球的概率為,此時(shí)白球的個(gè)數(shù)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

當(dāng)時(shí),判斷直線與曲線的位置關(guān)系;

若直線與曲線相切于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,一內(nèi)角為的菱形的四個(gè)頂點(diǎn).

(1)求橢圓的方程;

(2)若直線交橢圓兩點(diǎn),在直線上存在點(diǎn),使得為等邊三角形,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,某學(xué)校140名老師均在微信好友群中參與了“微信運(yùn)動(dòng)”,對(duì)運(yùn)動(dòng)10000步或以上的老師授予“運(yùn)動(dòng)達(dá)人”稱(chēng)號(hào),低于10000步稱(chēng)為“參與者”,為了解老師們運(yùn)動(dòng)情況,選取了老師們?cè)?月28日的運(yùn)動(dòng)數(shù)據(jù)進(jìn)行分析,統(tǒng)計(jì)結(jié)果如下:

運(yùn)動(dòng)達(dá)人

參與者

合計(jì)

男教師

60

20

80

女教師

40

20

60

合計(jì)

100

40

140

(Ⅰ)根據(jù)上表說(shuō)明,能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下認(rèn)為獲得“運(yùn)動(dòng)達(dá)人”稱(chēng)號(hào)與性別有關(guān)?

(Ⅱ)從具有“運(yùn)動(dòng)達(dá)人”稱(chēng)號(hào)的教師中,采用按性別分層抽樣的方法選取10人參加全國(guó)第四屆“萬(wàn)步有約”全國(guó)健走激勵(lì)大賽某賽區(qū)的活動(dòng),若從選取的10人中隨機(jī)抽取3人作為代表參加開(kāi)幕式,設(shè)抽取的3人中女教師人數(shù)為,寫(xiě)出的分布列并求出數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的最小值為2,求的值;

2)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4

1)求橢圓的方程;

2)已知直線與橢圓交于、兩點(diǎn),試問(wèn),是否存在軸上的點(diǎn),使得對(duì)任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,是棱的中點(diǎn).

1)證明:直線平面;

2)若,證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市一所醫(yī)院在某時(shí)間段為發(fā)燒超過(guò)38的病人特設(shè)發(fā)熱門(mén)診,該門(mén)診記錄了連續(xù)5天晝夜溫差()與就診人數(shù)的資料:

日期

1

2

3

4

5

晝夜溫差()

8

10

13

12

7

就診人數(shù)(人)

18

25

28

27

17

(1)求的相關(guān)系數(shù),并說(shuō)明晝夜溫差()與就診人數(shù)具有很強(qiáng)的線性相關(guān)關(guān)系.

(2)求就診人數(shù)(人)關(guān)于出晝夜溫差()的線性回歸方程,預(yù)測(cè)晝夜溫差為9時(shí)的就診人數(shù).

附:樣本的相關(guān)系數(shù)為,當(dāng)時(shí)認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)關(guān)系.

回歸直線方程為,其中.

參考數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊(cè)答案