在三棱錐P-ABC中,不能推出平面PAC⊥平面PBC的條件是( 。
A、BC⊥PA,BC⊥PC
B、AC⊥PB,AC⊥PC
C、AC⊥BC,PA⊥PB
D、平面PAC⊥平面ABC,BC⊥AC
考點(diǎn):平面與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:根據(jù)面面垂直的判斷定理解答.
解答: 解:對(duì)于選項(xiàng)A,由線面垂直的判定,容易得到BC⊥平面PAC;再根據(jù)面面垂直的判定得到平面PAC⊥平面PBC;
對(duì)于選項(xiàng)B,由線面垂直的判定,容易得到AC⊥平面PAC;再根據(jù)面面垂直的判定得到平面PAC⊥平面PBC;
對(duì)于選項(xiàng)D,由平面PAC⊥平面ABC,BC⊥AC得到BC⊥平面PAC,由面面垂直的判定得到平面PAC⊥平面PBC;
所以選項(xiàng)C 不能判定平面PAC⊥平面PBC;
故選C.
點(diǎn)評(píng):本題考查了線面垂直和面面垂直的判定定理的運(yùn)用,關(guān)鍵是熟練運(yùn)用定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)AB為過橢圓x2+4y2=4中心的弦,F(xiàn)為焦點(diǎn),求△FAB的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P ABCD中,底面ABCD為平行四邊形,∠ABC=60°,PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)AD=2,PA=AB=1,求點(diǎn)D到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=alnx-x+1在,x∈[e,e2]內(nèi)存在單調(diào)遞減區(qū)間,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,e2
B、(-∞,e)
C、(0,e2
D、(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱A1B1C1-ABC中,∠ACB=90°,CA=CB=CC1,M,P,N分別為A1C1,A1C,BC的中點(diǎn).
(Ⅰ)證明平面MNP∥平面ABB1A1;
(Ⅱ)求A1C與平面ABB1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D是不等式組
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的平面區(qū)域,則D中的點(diǎn)P(x,y)到直線x+y=10距離的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=x2+ax+b(a、b∈R)
(Ⅰ)若方程f(x)=0無實(shí)數(shù)根,求證:b>0;
(Ⅱ)若方程f(x)=0有兩實(shí)數(shù)根,且兩實(shí)根是相鄰的兩個(gè)整數(shù),求證:f(-a)=
1
4
(a2-1)
;
(Ⅲ)若方程f(x)=0有兩個(gè)非整數(shù)實(shí)根,且這兩實(shí)數(shù)根在相鄰兩整數(shù)之間,試證明存在整數(shù)k,使得|f(k)|≤
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
),
(1)若
m
n
=1,求cos(
3
-x)的值;
(2)記f(x)=
m
n
求使得f(x)取得最大值時(shí),x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q>1,且a1a4=8,a2+a3=6,則數(shù)列{an}的前n項(xiàng)和Sn=( 。
A、2n
B、2n-1
C、2n-1
D、2n-1-1

查看答案和解析>>

同步練習(xí)冊(cè)答案