已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,則下列結(jié)論中正確的是( 。
分析:由f(x)=sin(x+
π
x
)=cosx,cos(x-
π
2
)=sinx,利用三函數(shù)恒等換公式能求出結(jié)果.
解答:解:∵f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,
∴y=f(x)•g(x)=sin(x+
π
x
)cos(x-
π
2
)=sinxcosx=
1
2
sin2x
,
∴y=f(x)•g(x)的周期T=
2
=π,故A不正確;
y=f(x)•g(x)的最大值為
1
2
,故B不正確;
f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,
∴y=f(x)+g(x)=sinx+cosx=
2
sin(x+
π
4
)的對稱軸是x=kπ+
π
4
,k∈Z,故C不正確;
∵f(x)=sin(x+
π
x
)=cosx,cos(x-
π
2
)=sinx,
∴將f(x)的圖象向右平移
π
2
個單位后得到g(x)的圖象,故D正確.
故選D.
點評:本題考查三角函數(shù)的圖象和性質(zhì)的合理運用,解題時要認真審題,注意誘導公式、三角函數(shù)恒等變換的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(2x-
π
6
)-2m
x∈[0,
π
2
]
上有兩個零點,則m的取值范圍為( 。
A、(
1
4
,
1
2
)
B、[
1
4
,
1
2
]
C、[
1
4
,
1
2
D、(
1
4
,
1
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,則下列結(jié)論中正確的是( 。
A、函數(shù)y=f(x)•g(x)的周期為2
B、函數(shù)y=f(x)•g(x)的最大值為1
C、將f(x)的圖象向左平移
π
2
個單位后得到g(x)的圖象
D、將f(x)的圖象向右平移
π
2
個單位后得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
sinπx(x≥0)
f(x+1)-1(x<0)
,若f(-
5
6
)+f(m)=-1
,且1<m<2,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin[
π
3
(x+1)]-
3
cos[
π
3
(x+1)]
,則f(1)+f(2)+…+f(2011)+f(2012)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(2x+
π
6
)+cos(2x-
π
3
)

(Ⅰ)求f(x)的最大值及取得最大值時x的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(C)=1,c=2
3
,sinA=2sinB,求△ABC的面積.

查看答案和解析>>

同步練習冊答案