8.已知數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*).
(I)證明數(shù)列{$\frac{1}{{a}_{n}}$}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)已知數(shù)列{bn}的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n,都有(1+$\frac{_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,證明:$\frac{1}{2}$≤Sn<1.

分析 (I)由a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*),兩邊取倒數(shù)可得:$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,即可證明,再利用等差數(shù)列的通項(xiàng)公式即可得出an
(II)對(duì)任意正整數(shù)n,都有(1+$\frac{_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,可得bn=$\frac{1}{n(n+1)}$,再利用“裂項(xiàng)求和”即可得出.

解答 證明:(I)∵a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*),兩邊取倒數(shù)可得:$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$.
∴數(shù)列{$\frac{1}{{a}_{n}}$}為等差數(shù)列,首項(xiàng)為2,公差為$\frac{1}{2}$.
∴$\frac{1}{{a}_{n}}$=2+$\frac{1}{2}(n-1)$=$\frac{n+3}{2}$,∴an=$\frac{2}{n+3}$.
(II)對(duì)任意正整數(shù)n,都有(1+$\frac{_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,
∴$(1+\frac{(n+3)^{2}_{n}}{4})•n$=$\frac{5{n}^{2}+10n+9}{4n+4}$,
化為n•(n+3)2bn=$\frac{5{n}^{2}+10n+9}{n+1}$-4n=$\frac{(n+3)^{2}}{n+1}$,
∴bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$.
∴$\frac{1}{2}$≤Sn<1.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”、不等式的性質(zhì)、數(shù)列的單調(diào)性,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知三個(gè)不等式:(1)x2-2x-3<0;(2)$\frac{x-2}{x-4}<0$;(3)x2-(a+$\frac{1}{a}$)x+1<0(a>0).若同時(shí)滿足(1)(2)的x也滿足(3).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知等腰直角三角形的直角邊的長(zhǎng)為2,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的表面積為4$\sqrt{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(1,sinθ),$\overrightarrow$=(2,1).
(1)當(dāng)θ=$\frac{π}{6}$時(shí),求向量2$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo);
(2)若$\overrightarrow{a}$∥$\overrightarrow$,且θ∈(0,$\frac{π}{2}$),求sin(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某幾何體的三視圖如圖所示,分別是等邊三角形、等腰三角形和菱形.則該幾何體的體積是2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=ax-a-x(a>0且a≠1)是( 。
A.偶函數(shù)B.奇函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知拋物線y2=4x的焦點(diǎn)F,準(zhǔn)線為l,點(diǎn)P為拋物線上一點(diǎn),且在第一象限,過(guò)P點(diǎn)作PA⊥l,垂足為A,|PF|=4,則$\overrightarrow{AF}$•$\overrightarrow{FP}$的值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.指數(shù)函數(shù)y=ax-1+1的反函數(shù)的圖象過(guò)定點(diǎn)(2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)滿足f(x)=$\frac{1}{f(x+1)}$,當(dāng)x∈[-1,1]時(shí)f(x)=|x|,那么函數(shù)y=f(x)的圖象與函數(shù)f(x)=|log5x|的圖象的交點(diǎn)共有( 。
A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案