3.某幾何體的三視圖如圖所示,分別是等邊三角形、等腰三角形和菱形.則該幾何體的體積是2$\sqrt{3}$.

分析 由三視圖可知該幾何體為四棱錐,棱錐底面是菱形,對角線分別為2$\sqrt{3}$,2,棱錐的高為等邊三角形的高,可借助勾股定理求出.

解答 解:由三視圖可知該幾何體為四棱錐,棱錐底面是菱形,對角線分別為2$\sqrt{3}$,2,
∴棱錐的底面面積為$\frac{1}{2}$×2$\sqrt{3}$×2=2$\sqrt{3}$,
∵棱錐的高即主視圖的高,
∴棱錐的高為$\sqrt{(2\sqrt{3})^{2}-3}$=3.
∴棱錐的體積為$\frac{1}{3}$×$2\sqrt{3}×3$=2$\sqrt{3}$.
故答案為2$\sqrt{3}$.

點(diǎn)評 本題考查了空間幾何體的三視圖與體積計算,確定幾何體的底面積和高是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在矩形ABCD中,AB=1,BC=2,E為BC的中點(diǎn),點(diǎn)F在DC邊上,則$\overrightarrow{AE}•\overrightarrow{AF}$的最大值為( 。
A.3B.4C.5D.與F點(diǎn)的位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)$y=\frac{{\sqrt{{x^2}-1}}}{x-1}$的定義域是( 。
A.{x|-1≤x<1}B.{x|x≤-1或x>1}C.{x|-1≤x≤1}D.{x|x≤-1或x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若向量$\overrightarrow a=({1,0,z})$與向量$\overrightarrow b=({2,1,2})$的夾角的余弦值為$\frac{2}{3}$,則z=0,$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{29}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x∈R,x2-x+1>0”的否定是( 。
A.?x0∈R  x02-x0+1<0B.?x0∈R  x02-x0+1≤0
C.?x∈R  x2-x+1<0D.?x∈R  x2-x+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*).
(I)證明數(shù)列{$\frac{1}{{a}_{n}}$}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)已知數(shù)列{bn}的前n項和為Sn,且對任意正整數(shù)n,都有(1+$\frac{_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,證明:$\frac{1}{2}$≤Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\frac{x}{{x}^{2}+x+1}$的值域是( 。
A.[-1,$\frac{1}{3}$)B.(-1,$\frac{1}{3}$]C.(-1,$\frac{1}{3}$)D.[-1,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某化工企業(yè)計劃2015年底投入64萬元,購入一套污水處理設(shè)備.該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是1.5萬元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬元.
(1)設(shè)該企業(yè)使用該設(shè)備x年的年平均污水處理費(fèi)用為y(萬元),求y=f(x)的解析式;
(2)為使該企業(yè)的年平均污水處理費(fèi)用最低,問該企業(yè)幾年后需要重新更換新的污水處理設(shè)備?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,已知長方體的棱AB=BC=5,AA1=$\sqrt{5}$,則BC1與A1D1所成角的正切值是$\frac{\sqrt{5}}{5}$,BC1與B1D1所成角的余弦值是$\frac{\sqrt{15}}{6}$.

查看答案和解析>>

同步練習(xí)冊答案