【題目】設(shè)函數(shù)的導(dǎo)函數(shù)

(1)若曲線與曲線相切,求實數(shù)的值;

(2)設(shè)函數(shù)為函數(shù)的極大值,且

①求的值;

②求證:對于.

【答案】(1).(2)①k=1,②見證明

【解析】

(1)由題得 曲線在點處的切線方程為,解方程求出m的值.(2) ①,利用導(dǎo)數(shù)求出,易得函數(shù)在區(qū)間是減函數(shù),根據(jù)單調(diào)性求出k的值. ②利用導(dǎo)數(shù)求得,再證明.

(1) ,

設(shè)切點為,則曲線在點處的切線方程為,

,

結(jié)合題設(shè)得

所以

所以實數(shù)的值為.

(2)①:,

所以

,

,得

兩根為,

,

,因此,

0

+

0

極小值

極大值

結(jié)合題設(shè),有

易知函數(shù)在區(qū)間是減函數(shù),

因此,時,,即

.

②證明:由由①,,

所以

所以,

所以是減函數(shù),

所以時,,

由①,時,,

所以,

即對于成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E ,對于任意實數(shù)k,下列直線被橢圓E截得的弦長與lykx1被橢圓E截得的弦長不可能相等的是(  )

A. kxyk0 B. kxy10

C. kxyk0 D. kxy20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,,為側(cè)棱上一點.

(1)若,求證:平面

(2)求證:平面平面;

(3)在側(cè)棱上是否存在點,使得平面? 若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線Cy=與直線0)交與M,N兩點,

)當k=0時,分別求C在點MN處的切線方程;

y軸上是否存在點P,使得當k變動時,總有∠OPM=∠OPN?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是定義在R上的函數(shù),對R都有,且當0時,<0,=1.

(1)求的值;

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形區(qū)域ABCDA,C兩點處各有一個通信基站,假設(shè)其信號覆蓋范圍分別是扇形區(qū)域ADE和扇形區(qū)域CBF(該矩形區(qū)域內(nèi)無其他信號來源,基站工作正常).若在該矩形區(qū)域內(nèi)隨機地選一地點,則該地點無信號的概率是 _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家提出的“大眾創(chuàng)業(yè),萬眾創(chuàng)新”的號召,小李同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進行自主創(chuàng)業(yè)。經(jīng)過市場調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本為5萬元,每年生產(chǎn)萬件,需另投入流動成本為萬元,且,每件產(chǎn)品售價為10元。經(jīng)市場分析,生產(chǎn)的產(chǎn)品當年能全部售完。

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;

(注:年利潤=年銷售收入-固定成本-流動成本)

(2)年產(chǎn)量為多少萬件時,小李在這一產(chǎn)品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過右焦點作垂直于橢圓長軸的直線交橢圓于兩點,且為坐標原點.

(1)求橢圓的方程;

(2) 設(shè)直線與橢圓相交于兩點,若.

①求的值;

②求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】3名男生,4名女生,按照不同的要求排隊,求不同的排隊方案的方法種數(shù).(要求每問要有適當?shù)姆治鲞^程,列式并算出答案)

1)選其中5人排成一排;

2)排成前后兩排,前排3人,后排4人;

3)全體站成一排,男、女各站在一起;

4)全體站成一排,男生不能站在一起;

5)全體站成一排,甲不站排頭也不站排尾.

查看答案和解析>>

同步練習(xí)冊答案