【題目】已知橢圓E: ,對于任意實數(shù)k,下列直線被橢圓E截得的弦長與l:y=kx+1被橢圓E截得的弦長不可能相等的是( )
A. kx+y+k=0 B. kx-y-1=0
C. kx+y-k=0 D. kx+y-2=0
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的有( )
①在回歸分析中,可以借助散點圖判斷兩個變量是否呈線性相關關系.
②在回歸分析中,可以通過殘差圖發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),殘差平方和越小,模型的擬合效果越好.
③在回歸分析模型中,相關系數(shù)的絕對值越大,說明模型的擬合效果越好.
④在回歸直線方程中,當解釋變量每增加1個單位時,預報變量增加0.1個單位.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓C的標準方程;
(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把編號為1,2,3,4的四個大小、形狀相同的小球,隨機放入編號為1,2,3,4的四個盒子里.每個盒子里放入一個小球.
(1)求恰有兩個球的編號與盒子的編號相同的概率;
(2)設小球的編號與盒子編號相同的情況有種,求隨機變量的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓O:和點,由圓O外一點P向圓O引切線,Q為切點,且有 .
(1)求點P的軌跡方程,并說明點P的軌跡是什么樣的幾何圖形?
(2)求的最小值;
(3)以P為圓心作圓,使它與圓O有公共點,試在其中求出半徑最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子中裝有大小相同的小球個,在小球上分別標有1,2,3…,的號碼,已知從盒子中隨機取出兩個球,兩球號碼的最大值為的概率為.
(Ⅰ)盒子中裝有幾個小球?
(Ⅱ)現(xiàn)從盒子中隨機地取出4個球,記所取4個球的號碼中,連續(xù)自然數(shù)的個數(shù)的最大值為隨機變量(如取標號分別為2,4,6,8的小球時;取標號分別為1,2,4,6的小球時;取標號分別為1,2,3,5的小球時),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)為的導函數(shù)
(1)若曲線與曲線相切,求實數(shù)的值;
(2)設函數(shù)若為函數(shù)的極大值,且
①求的值;
②求證:對于.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com