14.已知復(fù)數(shù)z滿足z(1+i)=2-4i,那么z=-1-3i.

分析 把已知的等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:由z(1+i)=2-4i,得
$z=\frac{2-4i}{1+i}=\frac{(2-4i)(1-i)}{(1+i)(1-i)}=\frac{-2-6i}{2}=-1-3i$.
故答案為:-1-3i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一個(gè)空間幾何體的三視圖如圖所示,其中正視圖與左視圖上方均為等邊三角形,根據(jù)圖中數(shù)據(jù):
(1)求三棱錐外接球表面積
(2)求該幾何體的表面積
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.現(xiàn)將甲、乙兩名學(xué)生的6次模擬測(cè)試成績(jī)(百分制)制成如圖所示的莖葉圖:
(Ⅰ)若對(duì)甲、乙兩人各再模擬測(cè)試6次,試估算6次測(cè)試成績(jī)中甲、乙兩人的成績(jī)位于(80,100)內(nèi)的次數(shù);
(Ⅱ)現(xiàn)對(duì)甲、乙兩人作最后一次模擬測(cè)試,求甲、乙兩人的成績(jī)至少有一人位于(80,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知正六棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)均為2,其三視圖中的俯視圖如圖所示,則其左視圖的面積是4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,值域?yàn)镽的偶函數(shù)是(  )
A.y=x2+1B.y=ex-e-xC.y=lg|x|D.$y=\sqrt{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=cosx(sinx+$\sqrt{3}$cosx)-$\frac{{\sqrt{3}}}{2}$,x∈R.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)設(shè)α>0,若函數(shù)g(x)=f(x+α)為奇函數(shù),求α的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)命題p:“若ex>1,則x>0”,命題q:“若a>b,則$\frac{1}{a}<\frac{1}$”,則(  )
A.“p∧q”為真命題B.“p∨q”為真命題C.“¬p”為真命題D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在△ABC中,AB=AC=1,∠BAC=120°.
(Ⅰ)求$\overrightarrow{AB}$•$\overrightarrow{BC}$的值;
(Ⅱ)設(shè)點(diǎn)P在以A為圓心,AB為半徑的圓弧BC上運(yùn)動(dòng),且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,其中x,y∈R.求xy的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將三個(gè)半徑為3的球兩兩相切地放在水平桌面上,若在這三個(gè)球的上方放置一個(gè)半徑為1的小球,使得這四個(gè)球兩兩相切,則該小球的球心到桌面的距離為( 。
A.3$\sqrt{3}$B.2$\sqrt{3}$C.6D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案