【題目】(1)從區(qū)間內任意選取一個實數(shù),求的概率;

(2)從區(qū)間內任意選取一個整數(shù),求的概率

【答案】(1) .(2) .

【解析】試題(1)根據(jù)幾何概型概率公式,分別求出滿足不等式的的區(qū)間長度與區(qū)間總長度,求比值即可;(2) 區(qū)間內共有個數(shù),滿足的整數(shù)為共有 個,根據(jù)古典概型概率公式可得結果.

試題解析: (1),,

故由幾何概型可知,所求概率為.

(2),

則在區(qū)間內滿足的整數(shù)為5,67,8,9,共有5

故由古典概型可知,所求概率為.

【方法點睛】本題題主要考查古典概型及“區(qū)間型”的幾何概型,屬于中檔題. 解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,區(qū)間型求與區(qū)間有關的幾何概型問題關鍵是計算問題題的總區(qū)間 以及事件的區(qū)間;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本裏件對應的區(qū)域測度把握不準導致錯誤 ;(3)利用幾何概型的概率公式時 , 忽視驗證事件是否等可能性導致錯誤.

型】解答
束】
18

【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象過的(-2,16).

(1)求函數(shù)f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范圍.

【答案】(1)f(x)=; (2)m<2.

【解析】

(1)將代入可得,從而可得函數(shù)的解析式;(2)根據(jù)(1)中所求解析式判斷是實數(shù)集上的減函數(shù),不等式等價于,解不等式即可得結果.

(1)∵函數(shù)f(x)=ax(a>0且a≠1)的圖象過點(-2,16),

∴a-2=16

∴a=,即f(x)=,

(2)∵f(x)=為減函數(shù),f(2m+5)<f(3m+3),

∴2m+5>3m+3,

解得m<2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別是a,b,c.已知bsinA=3csinB,a=3,
(1)求b的值;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=-x2+2mx+7.

(Ⅰ)已知函數(shù)y=(x)在區(qū)間[1,3]上的最小值為4,求m的值;

(Ⅱ)若不等式fx)≤x2-6x+11在區(qū)間[1,2]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級有甲,乙,丙三位學生,他們前三次月考的物理成績如表:

第一次月考物理成績

第二次月考物理成績

第三次月考物理成績

學生甲

80

85

90

學生乙

81

83

85

學生丙

90

86

82

則下列結論正確的是( 。

A. 甲,乙,丙第三次月考物理成績的平均數(shù)為86

B. 在這三次月考物理成績中,甲的成績平均分最高

C. 在這三次月考物理成績中,乙的成績最穩(wěn)定

D. 在這三次月考物理成績中,丙的成績方差最大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某算法的程序框圖如圖所示,若將輸出的(x,y)值依次記為(x1,y1),(x2,y2),…,(xn,yn),…

(1)若程序運行中輸出的一個數(shù)組是(9,t),t的值.

(2)程序結束時,共輸出(x,y)的組數(shù)為多少?

(3)寫出程序框圖的程序語句.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知l1 , l2 , l3 , …ln為平面內相鄰兩直線距離為1的一組平行線,點O到l1的距離為2,A,B是l1的上的不同兩點,點P1 , P2 , P3 , …Pn分別在直線l1 , l2 , l3 , …ln上.若 =xn +yn (n∈N*),則x1+x2+…+x5+y1+y2+…+y5的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:

月份

1

2

3

利潤

2

3.9

5.5

(1)求利潤關于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預測4月和5月的利潤;

(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過1000萬?

相關公式:.

【答案】(1);(2)905萬;(3)6月

【解析】試題(1)根據(jù)平均數(shù)和最小二乘法的公式,求解,求出,即可求解回歸方程;(2)把分別代入,回歸直線方程,即可求解;(3)令,即可求解的值,得出結果.

試題解析:(1,,,

故利潤關于月份的線性回歸方程.

2)當時,,故可預測月的利潤為.

時,, 故可預測月的利潤為.

3)由,故公司2016年從月份開始利潤超過.

考點:1、線性回歸方程;2、平均數(shù).

型】解答
束】
21

【題目】已知定義在上的函數(shù)),并且它在上的最大值為

(1)求的值;

(2)令,判斷函數(shù)的奇偶性,并求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC 內部取n 個點, 將△ABC剖分為若干個小三角形(每兩個小三角形或者有一個公共頂點,或者有一條公共邊,或者完全沒有公共點,如圖所示).現(xiàn)將點A 染紅色, 點B 染藍色,點C 染黑色,其余n 個點的每個點也任意染上紅、藍、黑三色之一.我們稱三個頂點的顏色恰為紅、藍、黑的小三角形為“特征三角形”.證明:至少有一個小三角形是特征三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,⊙O △ABC 的外接圓,AM、AT分別為中線和角平分線,過點B 、C ⊙O的切線相交于點P , 聯(lián)結AP, BC和⊙O分別相交于點D 、E .求證T△AME 的內心 .

查看答案和解析>>

同步練習冊答案