6.P為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{{{a^2}-4}}$=1(a>2)上位于第一象限內(nèi)一點,且OP=2$\sqrt{2}$,令∠POx=θ,則θ的取值范圍為( 。
A.$(0,\frac{π}{12}]$B.$(0,\frac{π}{6}]$C.$(0,\frac{π}{4}]$D.$(0,\frac{π}{3}]$

分析 利用參數(shù)法求出點P的坐標,結(jié)合基本不等式進行求解即可.

解答 解:設∠POx=θ,則θ為銳角且$P(2\sqrt{2}cosθ,2\sqrt{2}sinθ)$,
所以$\frac{{8{{cos}^2}θ}}{a^2}-\frac{{8{{sin}^2}θ}}{{{a^2}-4}}=1$,
化簡得,$cos2θ=\frac{1}{8}[({a^2}-2)+\frac{12}{{{a^2}-2}}]≥\frac{1}{8}•2\sqrt{({a^2}-2)•\frac{12}{{{a^2}-2}}}=\frac{{\sqrt{3}}}{2}$,當且僅當${a^2}-2=\frac{12}{{{a^2}-2}}$,
即${a^2}=2(\sqrt{3}+1)$時取等號,所以$0<θ≤\frac{π}{12}$.
故選:A

點評 本題主要考查雙曲線性質(zhì)的應用,利用參數(shù)法結(jié)合基本不等式求最值是解決本題的關鍵.綜合性較強,有一定的難度.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.在0,1,2,3,4,5這六個數(shù)中隨機地抽取一個數(shù)記為a,再在剩余的五個數(shù)中隨機地抽取一個數(shù)記為b,則所得兩位數(shù)$\overline{ab}$是偶數(shù)的概率P為( 。
A.$\frac{11}{30}$B.$\frac{13}{30}$C.$\frac{11}{25}$D.$\frac{13}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在菱形ABCD中,∠B=60°,若向量$\overrightarrow{{A}{B}}$=(${\sqrt{3}$,-1),則|${\overrightarrow{C{B}}$-$\overrightarrow{CD}}$|=( 。
A.1B.2C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在1,2,4,5這4個數(shù)中一次隨機地取2個數(shù),則所取的2個數(shù)的和為6的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{log3(an-1)}(n∈N*)為等差數(shù)列,且a2=10,a4=82.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{1}{{{a_{n+1}}-{a_n}}}$,求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知向量$\overrightarrow a$=(2,m+1),$\overrightarrow b$=(m+3,4),且($\overrightarrow a+\overrightarrow b}$)∥(${\overrightarrow a-\overrightarrow b}$),則m=( 。
A.1B.5C.1或-5D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在直角坐標系xOy中,A(-1,0),B(0,0),以AB為邊在x軸上邊作一個平行四邊形,滿足tan∠CAB•tan∠DBA=$\frac{1}{2}$,E($\frac{{\sqrt{2}}}{2}$,0),則CE長的取值范圍是(  )
A.$(1,1+\frac{{\sqrt{2}}}{2})$B.$(1-\frac{{\sqrt{2}}}{2},1)$C.$(1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2})$D.$(1-\frac{{\sqrt{2}}}{2},1+\frac{{\sqrt{2}}}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設a,b表示不同的直線,α,β表示不同的平面,則下列說法正確的是(  )
A.若a∥α,b∥β,α∥β,則a∥b
B.若a∥α,b∥β,a∥b,則α∥β
C.若a,b是異面直線,a∥α,b∥β,a?β,b?α,則α∥β
D.若a,b是異面直線,a∥α,b∥β,a?β,b?α,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.lg10+lne-lg0.01=4.

查看答案和解析>>

同步練習冊答案