11.已知向量$\overrightarrow a$=(2,m+1),$\overrightarrow b$=(m+3,4),且($\overrightarrow a+\overrightarrow b}$)∥(${\overrightarrow a-\overrightarrow b}$),則m=(  )
A.1B.5C.1或-5D.-5

分析 根據(jù)平面向量的坐標(biāo)運(yùn)算與共線定理,列出方程即可求出m的值.

解答 解:向量$\overrightarrow a$=(2,m+1),$\overrightarrow b$=(m+3,4),且($\overrightarrow a+\overrightarrow b}$)∥(${\overrightarrow a-\overrightarrow b}$),
所以$\overrightarrow{a}$+$\overrightarrow$=(m+5,m+5),
$\overrightarrow{a}$-$\overrightarrow$=(-m-1,m-3),
所以(m+5)(m-3)-(-m-1)(m+5)=0,
即(m+5)(m-1)=0,
解得m=1或m=-5.
故選:C.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)表示與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex+m-lnx.
(I) 設(shè)x=1是函數(shù)f(x)的極值點(diǎn),求證:ex-elnx≥e;
(II) 設(shè)x=x0是函數(shù)f(x)的極值點(diǎn),且f(x)≥0恒成立,求m的取值范圍.(其中常數(shù)a滿足alna=1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.過拋物線y=ax2(a>$\frac{1}{12}$)的焦點(diǎn)F作圓C:x2+y2-8y+15=0的一條切線,切點(diǎn)為 M,若|FM|=2$\sqrt{2}$.
(1)求實(shí)數(shù)a的值;
(2)直線l經(jīng)過點(diǎn)F,且與拋物線交于點(diǎn) A、B,若以 A B為直徑的圓與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,若sinB,sinA,sinC成等差數(shù)列,則sinA的取值范圍是$({0,\frac{{\sqrt{3}}}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.P為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{{{a^2}-4}}$=1(a>2)上位于第一象限內(nèi)一點(diǎn),且OP=2$\sqrt{2}$,令∠POx=θ,則θ的取值范圍為( 。
A.$(0,\frac{π}{12}]$B.$(0,\frac{π}{6}]$C.$(0,\frac{π}{4}]$D.$(0,\frac{π}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用系統(tǒng)抽樣法(按等距離的規(guī)則),要從160名學(xué)生中抽取一定容量的樣本,將160名學(xué)生從1~160進(jìn)行編號(hào),已知抽樣號(hào)碼中最小的兩個(gè)分別是7,15,則抽樣號(hào)碼的最大值是(  )
A.23B.125C.160D.159

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.集合M={x|lgx>0},N={x|x2≤4},則M∩N=( 。
A.(1,2)B.[1,2]C.(1,2]D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若向量$\overrightarrow{BA}$=(1,2),$\overrightarrow{CA}$=(4,5),且$\overrightarrow{CB}$•(λ$\overrightarrow{BA}$+$\overrightarrow{CA}$)=0,則實(shí)數(shù)λ的值為( 。
A.3B.-$\frac{9}{2}$C.-3D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四式不能化簡(jiǎn)為$\overrightarrow{AD}$的是( 。
A.$(\overrightarrow{AB}+\overrightarrow{CD})+\overrightarrow{BC}$B.$(\overrightarrow{AD}+\overrightarrow{MB})+(\overrightarrow{BC}+\overrightarrow{CM})$C.$\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{CD}$D.$\overrightarrow{MB}+\overrightarrow{AD}-\overrightarrow{BM}$

查看答案和解析>>

同步練習(xí)冊(cè)答案