A. | 1 | B. | 5 | C. | 1或-5 | D. | -5 |
分析 根據(jù)平面向量的坐標運算與共線定理,列出方程即可求出m的值.
解答 解:向量$\overrightarrow a$=(2,m+1),$\overrightarrow b$=(m+3,4),且($\overrightarrow a+\overrightarrow b}$)∥(${\overrightarrow a-\overrightarrow b}$),
所以$\overrightarrow{a}$+$\overrightarrow$=(m+5,m+5),
$\overrightarrow{a}$-$\overrightarrow$=(-m-1,m-3),
所以(m+5)(m-3)-(-m-1)(m+5)=0,
即(m+5)(m-1)=0,
解得m=1或m=-5.
故選:C.
點評 本題考查了平面向量的坐標表示與應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(0,\frac{π}{12}]$ | B. | $(0,\frac{π}{6}]$ | C. | $(0,\frac{π}{4}]$ | D. | $(0,\frac{π}{3}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 23 | B. | 125 | C. | 160 | D. | 159 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | -$\frac{9}{2}$ | C. | -3 | D. | -$\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\overrightarrow{AB}+\overrightarrow{CD})+\overrightarrow{BC}$ | B. | $(\overrightarrow{AD}+\overrightarrow{MB})+(\overrightarrow{BC}+\overrightarrow{CM})$ | C. | $\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{CD}$ | D. | $\overrightarrow{MB}+\overrightarrow{AD}-\overrightarrow{BM}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com