【題目】已知正項等比數(shù)列{an}滿足a7=a6+2a5 , 若存在兩項am , an使得 ,則 的最小值為(
A.
B.
C.
D.不存在

【答案】A
【解析】解:∵a7=a6+2a5
∴a5q2=a5q+2a5 ,
∴q2﹣q﹣2=0,
∴q=2,
∵存在兩項am , an使得 ,
∴aman=16a12 ,
∴qm+n2=16=24 , 而q=2,
∴m+n﹣2=4,
∴m+n=6,
= (m+n)( )= (5+ )≥ (5+4)= ,當且僅當m=2,n=4時等號成立,
的最小值為 ,
故選:A.
把所給的數(shù)列的三項之間的關系,寫出用第五項和公比來表示的形式,求出公比的值,整理所給的條件,寫出m,n之間的關系,用基本不等式得到最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x),滿足當x>0時,f(x)>1,且對任意的x,y,有,

(1)的值;

(2)求證:對任意x,都有f(x)>0;

(3)解不等式f(32x)>4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系xoy中,直線l的參數(shù)方程是 (t為參數(shù)),以射線ox為極軸建立極坐標系,曲線C的極坐標方程是 2sin2θ=1.
(1)求曲線C的直角坐標方程;
(2)求直線l與曲線C相交所得的弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在同一坐標系中,的圖象關于軸對稱;

是奇函數(shù);

的圖象關于成中心對稱;

的最大值為

的單調增區(qū)間:。

以上五個判斷正確有____________________寫上所有正確判斷的序號)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種商品在天內每克的銷售價格()與時間的函數(shù)圖象是如圖所示的兩條線段(不包含兩點);該商品在 30 天內日銷售量()與時間()之間的函數(shù)關系如下表所示:

5

15

20

30

銷售量

35

25

20

10

(1)根據提供的圖象,寫出該商品每克銷售的價格()與時間的函數(shù)關系式;

(2)根據表中數(shù)據寫出一個反映日銷售量隨時間變化的函數(shù)關系式;

(3)在(2)的基礎上求該商品的日銷售金額的最大值,并求出對應的值.

(注:日銷售金額=每克的銷售價格×日銷售量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切. 是橢圓的右頂點與上頂點,直線與橢圓相交于、兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)當四邊形面積取最大值時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線過定點.

與圓相切,求的方程;

與圓相交于兩點,求的面積的最大值,并求此時直線的方程.(其中點C是圓C的圓心)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱,側面.

(Ⅰ)若分別是的中點,求證: ;

(Ⅱ)若三棱柱的各棱長均為2,側棱與底面所成的角為,問在線段上是否存在一點,使得平面?若存在,求的比值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案