下列敘述中正確的是
 

①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;
②若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直;
③垂直于同一直線的兩個(gè)平面相互平行;
④若兩個(gè)平面垂直,那么垂直于其中一個(gè)平面的直線與另一個(gè)平面平行.
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:①若一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面都平行,
那么這兩個(gè)平面相互平行,故①錯(cuò)誤;
②若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,
那么由平面與平面垂直的判定定理知這兩個(gè)平面相互垂直,故②正確;
③由平面與平面平行的判定定理知垂直于同一直線的兩個(gè)平面相互平行,故③正確;
④若兩個(gè)平面垂直,那么垂直于其中一個(gè)平面的直線與另一個(gè)平面平行或包含在另一個(gè)平面內(nèi),故④錯(cuò)誤.
故答案為:②③.
點(diǎn)評(píng):本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象如圖所示,為了得到函數(shù)y=cos(ωx+
π
6
)的圖象,只需將y=f(x)的圖象( 。
A、向右平移
π
3
個(gè)單位
B、向左平移
π
3
個(gè)單位
C、向右平移
π
6
個(gè)單位
D、向左平移
π
6
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)定義域:
(1)f(x)=lg(x-2)+
1
x-3
;
(2)f(x)=logx+1(16-4x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點(diǎn)A,B,C是圓O上的點(diǎn),且AB=4,∠ACB=45°,則圓O的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
a
x+1
(a∈R).
(1)當(dāng)a=
9
2
時(shí),如果函數(shù)g(x)=f(x)-k僅有一個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)當(dāng)a=2時(shí),試比較f(x)與1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC,點(diǎn)P,A,B,C都在半徑為
3
的球面上,若PA,PB,PC兩兩互相垂直,則球心到截面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}是等比數(shù)列,b1=1,b2S2=16,b2+S3=17.
(1)求{an}與{bn}的通項(xiàng)公式;
(2)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4
對(duì)一切n∈N*都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1上中點(diǎn),F(xiàn)是AB中點(diǎn),AC=1,BC=2,AA1=4.
(1)求證:CF∥平面AEB1;
(2)求三棱錐C-AB1E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的對(duì)稱軸方程為:x=1,設(shè)向量
a
=(sinx,2),
b
=(2sinx,
1
2
),
c
=( cos2x,1),
d
=(2,1).
(1)分別求
a
b
c
d
的取值范圍;
(2)當(dāng)x∈[0,π]時(shí),求不等式f(
a
b
)>f(
c
d
)的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案