10.不等式選講已知函數(shù)f(x)=|2x+a|-a
(1)當(dāng)a=2時(shí),求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x-1|,當(dāng)x∈R時(shí)f(x)+g(x)≥3,求a的取值范圍.

分析 (1)當(dāng)a=2時(shí),解不等式|2x+2|-2≤6得-5≤x≤3,即可求不等式f(x)≤6的解集;
(2)當(dāng)x∈R時(shí),f(x)+g(x)=|2x+a|-a+|2x-1|≥|2x+a+1-2x|-a=|a+1|-a,當(dāng)$x=\frac{1}{2}$時(shí)等號(hào)成立,所以當(dāng)x∈R時(shí)f(x)+g(x)≥3等價(jià)于|a+1|-a≥3,即可求a的取值范圍.

解答 解:(1)當(dāng)a=2時(shí),f(x)=|2x+2|-2
解不等式|2x+2|-2≤6得-5≤x≤3
因此不等式f(x)≤6的解集為{x|-5≤x≤3}…(5分)
(2)當(dāng)x∈R時(shí),f(x)+g(x)=|2x+a|-a+|2x-1|≥|2x+a+1-2x|-a=|a+1|-a
當(dāng)$x=\frac{1}{2}$時(shí)等號(hào)成立,所以當(dāng)x∈R時(shí)f(x)+g(x)≥3等價(jià)于|a+1|-a≥3
當(dāng)a≤-1時(shí),a≤-2
當(dāng)a>-1時(shí),無解,
所以a∈(-∞,-2]…(10分)

點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,考查絕對(duì)值不等式,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.自主招生,是高校選拔錄取工作改革的重要環(huán)節(jié),通過高考自主招生筆試和面試之后,可以得到相應(yīng)的高考降分政策;某高中高一學(xué)生共有1000人,其中城填初中畢業(yè)生750名(稱為“城填生“),農(nóng)村初中畢業(yè)生250人(稱為“農(nóng)村生“);為了摸清學(xué)生是否愿意參加自主招生,以便安排自主招生培訓(xùn),擬采用分層抽樣的方法抽取100名學(xué)生進(jìn)行調(diào)查;
(1)試完成下列2×2聯(lián)表,并分析是否有95%以上的把握說“是否愿意參加自主招生“與生源有關(guān).
愿意參加不愿意參加合計(jì)
城填生502575
農(nóng)村生101525
合計(jì)6040100
(2)現(xiàn)對(duì)愿意參加自主招生的同學(xué)組織摸底考試,考試題共有5道題,每題20分,對(duì)于這5道題,考生“高富帥”完全會(huì)答的有3道,不完全會(huì)的有2道,不完全會(huì)的每道題她得分S的概率滿足:SKIPIF 1<0,假設(shè)解答各題之間沒有影響.
①對(duì)于一道不完全會(huì)的題,求“高富帥”得分的均值E(s);
②試求“高富帥”在本次摸底考試中總得分的數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“數(shù)列{an}為等比數(shù)列”是“${a_{n+1}}^2={a_n}•{a_{n+2}}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)=\frac{sinx}{x}$的部分圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知四棱錐P-ABCD中,平面PAD⊥平面ABCD,其中四邊形ABCD為正方形,△PAD為等邊三角形,AB=2,則四棱錐P-ABCD外接球的體積為$\frac{{28\sqrt{21}}}{27}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若A(1,2),B(2,3),C(-3,5),則△ABC為( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.不等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A、B均為實(shí)數(shù)集R的子集,記:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={-1,3},試用列舉法表示A+B;
(2)設(shè)a1=$\frac{2}{3}$,當(dāng)n∈N*,且n≥2時(shí),曲線$\frac{x^2}{{{n^2}-n+1}}+\frac{y^2}{1-n}=\frac{1}{9}$的焦距為an,如果A={a1,a2,…,an},B=$\{-\frac{1}{9},-\frac{2}{9},-\frac{2}{3}\}$,設(shè)A+B中的所有元素之和為Sn,對(duì)于滿足m+n=3k,且m≠n的任意正整數(shù)m、n、k,不等式Sm+Sn-λSk>0恒成立,求實(shí)數(shù)λ的最大值;
(3)若整數(shù)集合A1⊆A1+A1,則稱A1為“自生集”,若任意一個(gè)正整數(shù)均為整數(shù)集合A2的某個(gè)非空有限子集中所有元素的和,則稱A2為“N*的基底集”,問:是否存在一個(gè)整數(shù)集合既是自生集又是N*的基底集?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,平行四邊形ABCD的兩條對(duì)角線相交于點(diǎn)M,且$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,則$\overrightarrow{MD}$=( 。
A.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$B.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$C.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)作圓x2+y2=a2的兩條切線,切點(diǎn)分別為A,B,若∠AOB=120°(O是坐標(biāo)原點(diǎn)),則雙曲線C的離心率為( 。
A.2B.3C.$\frac{1}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案