已知(a-i)2=-2i,其中i是虛數(shù)單位,則實(shí)數(shù)a=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算整理,然后由實(shí)部和實(shí)部相等,虛部等于虛部求得a值.
解答: 解:∵(a-i)2=-2i,
∴a2-2ai-1=-2i,
a2-1=0
-2a=-2
,解得:a=1.
故答案為:1.
點(diǎn)評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)相等的條件,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)判斷函數(shù)f(x)=x3+
1
x3
的奇偶性;
(2)判斷函數(shù)f(x)=
x
x2-1
在(-1,1)內(nèi)的單調(diào)性并用單調(diào)性的定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

α∈(
π
2
,π)
,且sinαcosα=-
1
2
,則tan
α
2
的值是( 。
A、1+
2
B、
2
-1
C、1±
3
D、
3
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線a∥平面α,則下列命題是假命題的是(  )
A、a與α內(nèi)的無數(shù)條直線平行
B、a與α內(nèi)的所有直線都平行
C、a與α內(nèi)的無數(shù)條直線垂直
D、a與α無公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
2
1+i
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a、b滿足a-b+4≥0,a+b-4≤0,b≥0,b≤ka,記a+2b的最大值為f(k),給出下列命題:
①若m≠n,使得f(m)=f(n),則mn<0;②?m>0,?n<0,使得f(m)=f(n);③?m<0,?n>0,使得f(m)=f(n).其中錯(cuò)誤的命題有
 
(寫出所有錯(cuò)誤命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的參數(shù)方程是
x=2cosθ
y=2sinθ
(θ為參數(shù)),那么該圓的普通方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對于任意的n∈N*,都有Sn=2an-3n.
(Ⅰ)求{an}的首項(xiàng)a1與遞推關(guān)系式:an+1=f(an);
(Ⅱ)先閱讀下面定理:“若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A,B為常數(shù),且A≠1,B≠0,則數(shù)列{an-
B
4-A
}是以A為公比的等比數(shù)列.”請你在(Ⅰ)的基礎(chǔ)上應(yīng)用本定理,求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知:an=sin(2n-1)α,求Sn
(2)已知:a1=1,an+1=2an+n,求{an}.
(3)已知:a=x+y,b=y+z,ab=(x+y)(y+z)=1,求x+2y+z的最小值.

查看答案和解析>>

同步練習(xí)冊答案