分析 利用兩角和差的正弦公式化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)、余弦函數(shù)的圖象的對(duì)稱(chēng)性求得θ的值.
解答 解:∵函數(shù)$y=sin(x+θ)+\sqrt{3}cos(x+θ)$=2[$\frac{1}{2}$sin(x+θ)+$\frac{\sqrt{3}}{2}$cos(x+θ)]=2sin(x+θ+$\frac{π}{3}$)的圖象關(guān)于y軸對(duì)稱(chēng),
∴θ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,即θ=kπ+$\frac{π}{6}$,k∈Z,
故答案為:θ=kπ+$\frac{π}{6}$,k∈Z.
點(diǎn)評(píng) 本題主要考查兩角和差的正弦公式,正弦函數(shù)、余弦函數(shù)的圖象的對(duì)稱(chēng)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\root{6}{{{{(-3)}^2}}}=\root{3}{-3}$ | B. | $\root{4}{a^4}=a$ | C. | $\root{6}{2^2}=\root{3}{2}$ | D. | a0=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 是公差為p的等差數(shù)列 | B. | 是公差為q的等差數(shù)列 | ||
C. | 是公差為p+q的等差數(shù)列 | D. | 不是等差數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3000 | B. | 900 | C. | 1000 | D. | 1500 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | $\frac{1}{{\sqrt{3}}}$ | D. | -$\frac{1}{{\sqrt{3}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {銳角} | B. | {小于90°的角} | ||
C. | {第一象限角} | D. | {α|k•360°<α<k•360°+90°(k∈Z,k≤0)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com