(本題滿分13分)已知橢圓:()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是直線上的兩個動點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
△ABC的兩個頂點(diǎn)坐標(biāo)分別是B(0,6)和C(0,-6),另兩邊AB、AC的斜率的乘積是-,求頂點(diǎn)A的軌跡方程.?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C: 過點(diǎn), 且離心率.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點(diǎn)的動直線交橢圓于點(diǎn),設(shè)橢圓的左頂點(diǎn)為連接且交動直線于,若以MN為直徑的圓恒過右焦點(diǎn)F,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、PB與直線l:y=-2分別交于點(diǎn)M、N.
(1)設(shè)直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當(dāng)點(diǎn)P運(yùn)動時,以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線上任意一點(diǎn)到兩個定點(diǎn),的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(0,-2)的直線與曲線交于兩點(diǎn),且(為原點(diǎn)),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,左端點(diǎn)為
(1)求橢圓的方程;
(2)過橢圓的右焦點(diǎn)且斜率為的直線被橢圓截的弦長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓右頂點(diǎn)到直線的距離為,離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負(fù)半軸的交點(diǎn),設(shè)直線:,是否存在實(shí)數(shù)m,使直線與(Ⅰ)中的橢圓有兩個不同的交點(diǎn)M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓 經(jīng)過點(diǎn)其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于A、B兩點(diǎn),以線段為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓上,為坐標(biāo)原點(diǎn).求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,的兩個頂點(diǎn)、的坐標(biāo)分別是(-1,0),(1,0),點(diǎn)是的重心,軸上一點(diǎn)滿足,且.
(1)求的頂點(diǎn)的軌跡的方程;
(2)不過點(diǎn)的直線與軌跡交于不同的兩點(diǎn)、,當(dāng)時,求與的關(guān)系,并證明直線過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com