【題目】已知函數(shù) 的最小值為 .
(1)求 的值;(2)求 的解析式.
【答案】(1)-4;(2)
【解析】試題分析:(1)由a=2,求得f(t)=(t﹣2)2﹣4,即可得到最小值g(2);
(2)運(yùn)用換元法和二次函數(shù)的對稱軸和區(qū)間的關(guān)系,對a展開討論,即可得到最小值的表達(dá)式.
試題解析:
(1)a=2時(shí),f(x)=4x﹣42x(﹣1≤x≤2)
=(2x﹣2)2﹣4,
令t=2x(≤t≤4),
即有f(t)=(t﹣2)2﹣4,
由于2∈[,4],可得最小值g(2)=﹣4;
(2)函數(shù)f(x)=4x﹣a2x+1(﹣1≤x≤2),
令t=2x(≤t≤4),
則f(t)=t2﹣2at=(t﹣a)2﹣a2,
當(dāng)a≤時(shí),區(qū)間[,4]為增區(qū)間,即有t=取得最小值﹣a;
當(dāng)<a<4時(shí),當(dāng)t=a時(shí),取得最小值﹣a2;
當(dāng)a≥4時(shí),區(qū)間[,4]為減區(qū)間,即有t=4取得最小值16﹣8a.
即有.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)會(huì)議中,有五位教師來自三所學(xué)校,其中學(xué)校有位,學(xué)校有位,學(xué)校有位,F(xiàn)在五位老師排成一排照相,若要求來自同一學(xué)校的老師不相鄰,則共有_______種不同的站隊(duì)方法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“若,則關(guān)于x的不等式的解集為空集”,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個(gè)數(shù)是( 。
A.0B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有兩個(gè)命題:(1)不等式|x|+|x-1|>m的解集為R;(2)函數(shù)f(x)=(7-3m)x在R上是增函數(shù);如果這兩個(gè)命題中有且只有一個(gè)是真命題,則m的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將寬和長都分別為x,的兩個(gè)矩形部分重疊放在一起后形成的正十字形面積為注:正十字形指的是原來的兩個(gè)矩形的頂點(diǎn)都在同一個(gè)圓上,且兩矩形長所在的直線互相垂直的圖形,
求y關(guān)于x的函數(shù)解析式;
當(dāng)x,y取何值時(shí),該正十字形的外接圓面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知有限集,如果中元素滿足,就稱為“復(fù)活集”.
(1)判斷集合是否為“復(fù)活集”,并說明理由;
(2)若,,且是“復(fù)活集”,求的取值范圍;
(3)若,求證:“復(fù)活集”有且只有一個(gè),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線過C的左焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的盒子中關(guān)有蝴蝶、蜜蜂和蜻蜓三種昆蟲共11只,現(xiàn)在盒子上開一小孔,每次只能飛出1只昆蟲(假設(shè)任意1只昆蟲等可能地飛出).若有2只昆蟲先后任意飛出(不考慮順序),則飛出的是蝴蝶或蜻蜓的概率是.
(1)求盒子中蜜蜂有幾只;
(2)若從盒子中先后任意飛出3只昆蟲(不考慮順序),記飛出蜜蜂的只數(shù)為X,求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com