分析 (1)圓心C是MN的垂直平分線與直線2x-y-2=0的交點,CM長為半徑,進而可得圓的方程;
(2)直線l過點(-2,5)且與圓C有兩個不同的交點,則C到l的距離小于半徑,進而得到k的取值范圍;
(3)求出AB的垂直平分線方程,將圓心坐標代入求出斜率,進而可得答案.
解答 (本小題滿分12分)
解:(1)MN的垂直平分線方程為:x-2y-1=0與2x-y-2=0聯(lián)立解得圓心坐標為C(1,0)
R2=|CM|2=(-3-1)2+(3-0)2=25
∴圓C的方程為:(x-1)2+y2=25…(4分)
(2)設(shè)直線l的方程為:y-5=k(x+2)即kx-y+2k+5=0,設(shè)C到直線l的距離為d,
則d=$\frac{|3k+5|}{\sqrt{{k}^{2}+1}}$
由題意:d<5 即:8k2-15k>0
∴k<0或k>$\frac{15}{8}$
又因為k>0
∴k的取值范圍是($\frac{15}{8}$,+∞) …(8分)
(3)設(shè)符合條件的直線存在,則AB的垂直平分線方程為:y+1=-$\frac{1}{k}$(x-3)即:x+ky+k-3=0
∵弦的垂直平分線過圓心(1,0)∴k-2=0 即k=2
∵k=2>$\frac{15}{8}$
故符合條件的直線存在,l的方程:x+2y-1=0…(12分)
點評 本題考查的知識點是直線與圓的位置關(guān)系,圓的標準方程,直線方程,點到直線的距離公式,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{π}{2}$ | B. | 1 | C. | 0 | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5、3、0.8 | B. | 10、6、0.8 | C. | 5、3、0.6 | D. | 10、6、0.6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com