【題目】某學校有兩個參加國際中學生交流活動的代表名額,為此該學校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學生中人選2人做代表。

求:(1)選出的2名同學來自不同年相級部且性別同的概率;

(2)選出的2名同學都來自高中部或都來自初中部的概率。

【答案】(1);(2).

【解析】

分析:設(shè)高中部:男生;女生。初中部:男生;女生,,列出可得的總的基本事件,共個,

設(shè),事件中包含了個基本事件,代入公式可得答案

設(shè),事件中包含了個基本事件,代入公式可得答案

詳解:設(shè)高中部:男生A1,A2;女生B1。初中部:男生a1;女生b1,b2

總的基本事件:A1,A2//A1,B1//A1,a1//A1,b1//A1,b2//

A2,B1//A2,a1//A2,b1//A2,b2//

B1,a1//B1,b1//B1,b2//

a1,b1//a1,b2//

b1,b2// 共計15個

(1)設(shè)A={“選出的2名同學來自不同年相級部且性別同”}

則A中包含的基本事件有:A1,a1//A2,a1//B1,b1//B1,b2// 共計4個

所以P(A)=

(2)設(shè)B={“選出的2名同學都來自高中部或都來自初中部”}

則B中包含的基本事件有: A1,A2//A1,B1//A2,B1//a1,b1//a1,b2//b1,b2// 共計6個

所以P(B)=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,已知),且.

(1)證明為等比數(shù)列,并求數(shù)列的通項公式;

(2)設(shè),且證明;

(3)在(2)小問的條件下,若對任意的,不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結(jié)論;

(3)求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=xR),gx=2a-1

1)求函數(shù)fx的單調(diào)區(qū)間與極值

2)若fx≥gx恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,經(jīng)過點且斜率為的直線與橢圓有兩個不同的交點

(1)求的取值范圍;

(2)設(shè)橢圓與軸正半軸、軸正半軸的交點分別為,是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用空間向量解決下列問題:如圖,在斜三棱柱中, 的中點, ⊥平面, ,

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體ABCD—A1B1C1D1中,試在DD1確定一點P,使得直線BD1∥平面PAC,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點為F,上頂點為A,短軸長為2,O為原點,直線AF與橢圓C的另一個交點為B,且△AOF的面積是△BOF的面積的3倍.
(1)求橢圓C的方程;
(2)如圖,直線l:y=kx+m與橢圓C相交于P,Q兩點,若在橢圓C上存在點R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四組函數(shù),表示同一函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.(x)=|x+1|,g(x)=

查看答案和解析>>

同步練習冊答案