19.已知P={(x,y)|x+y=2},Q={(x,y)|x2+y2=2},那么P∩Q為( 。
A.B.(1,1)C.{(1,1)}D.{(-1,-1)}

分析 根據(jù)集合的交集的定義轉(zhuǎn)化為直線和圓的交點問題,利用方程組法進行求解即可.

解答 解:由x+y=2得y=2-x代入x2+y2=2得x2+(2-x)2=2,
即x2-2x+1=0,即(x-1)2=0,
則x=1,此時y=1,
即P∩Q={(1,1)},
故選:C.

點評 本題主要考查集合的基本運算,利用方程組法進行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若tanα=$\frac{3}{4}$,則cos2α+2sin2α=(  )
A.$\frac{64}{25}$B.$\frac{48}{25}$C.1D.$\frac{16}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式組$\left\{\begin{array}{l}{x+2y≥1}\\{x-3y≤1}\\{{x}^{2}+{y}^{2}-2x≤3}\end{array}\right.$表示的平面區(qū)域的面積為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}是各項均為正數(shù)的等差數(shù)列,公差為d,對任意的n∈N+,bn是an和an+1的等比中項.
(1)設(shè)cn=bn+12-bn2,n∈N+,求證:數(shù)列{cn}是等差數(shù)列;
(2)設(shè)a1=d,Tn=$\sum_{k=1}^{2n}$(-1)kbk2,n∈N*,求證:$\sum_{i=1}^{n}\frac{1}{{T}_{k}}$<$\frac{1}{2nrstwuv^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和Sn=1+λan,其中λ≠0.
(1)證明{an}是等比數(shù)列,并求其通項公式;
(2)若S5=$\frac{31}{32}$,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(1-x2)(1+x)16的展開式中,x12的系數(shù)是-6188.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在等差數(shù)列{an}中,若an=8-3n.
(1)求{an}前n項之和Sn;
(2)求數(shù)列{|an|}的前10項之和T10;
(3)求數(shù)列{|an|}的前n項之和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若無窮數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,則稱{an}具有性質(zhì)P.
(1)若{an}具有性質(zhì)P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c5=1;b5=c1=81,an=bn+cn,判斷{an}是否具有性質(zhì)P,并說明理由;
(3)設(shè){bn}是無窮數(shù)列,已知an+1=bn+sinan(n∈N*),求證:“對任意a1,{an}都具有性質(zhì)P”的充要條件為“{bn}是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的通項公式an=(-1)n(5n-3),n∈N*,求數(shù)列的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案